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SECTION 5.1 Introduction

In this chapter continuous probability distributions are discussed. In particular, the
normal distribution, which is the most widely used distribution in statistical work, is
explored in depth.

The normal, or Gaussian, or "bell-shaped," distribution is the cornerstone of most
of the methods of estimation and hypothesis testing that are developed in the rest of
this text. Many random variables, such as the distribution of birthweights or blood
pressures in the general population, tend to approximately follow a normal distribution.
In addition, many random variables that are not themselves normal, are closely approx­
imated by a normal distribution when summed many times. In such cases, using the
normal distribution is desirable, since tables for the normal distribution are more widely
available than those for many other distributions.

EXAMPLE S1 Infectious Disease The number of neutrophils in a sample of 2 white blood cells is not
normally distributed, but the number in a sample of 100 white blood cells is very close to being
normally distributed. • ••

SECTION 5.2 General Concepts

We want to develop an analogue for a continuous random variable to the concept of
a probability mass function, as was developed for a discrete random variable in Section
4.3. Thus, we would like to know which values are more probable than others and
how probable they are.

EXAMPLE 5.2 Hypertension Consider the distribution of diastolic blood-pressure measurements in 35-44­
year-old men. In actual practice this distribution is discrete because only a finite number of
blood-pressure values are possible, since the measurement is only accurate to within 2 mm Hg,
or in some cases 5 mm Hg. However, assume that there is no measurement error and hence
the random variable can take on a continuum of possible values. One consequence of this
assumption is that the probabilities of specific blood-pressure measurement values such as 117.3
are a and, thus, the concept of a probability mass function cannot be used. The proof of this
statement is beyond the scope of this text. Instead, we speak in terms of the probability that
blood pressure falls within a range of values. Thus, the probabilities of blood pressures (denoted
by X) falling in the ranges of 90 ~ X < 95, 95 ~ X < 100, and X? 100 might be 15%,5%,
and 2%, respectively. People whose blood pressures fall in these ranges might be denoted as
borderline, mild hypertensive, and severe hypertensive, respectively. • ••
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106 CHAPTER 5 / CONTINUOUS PROBABiLITY DISTRIBUTIONS

Although the probability of exactly obtaining any value is 0, we still have the

intuitive notion that certain ranges of values occur more frequently than others. This
notion can be quantified using the concept of a probability density function.

DEFINnlON 5~ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The probability density function of the random variable X is a curve such that the area under
the curve between any two points a and b is equal to the probability that the random variable
X falls between a and b. Thus, the total area under the curve over the possible range of values
for the random variable is 1. •

The probability density function takes on high values in regions of high probability
and low values in regions of low probability.

EXAMPLE 5.3 Hypertension The probability density function for diastolic blood pressure in 35-44-year-old
men is given in Figure 5.1. Areas A, B, and C correspond to the probabilities of being borderline,
mild hypertensive, and severe hypertensive, respectively. Furthermore, the most likely range
of values for diastolic blood pressure occurs around 80 mm Hg, with the values becoming
increasingly unlikely as we move further away from 80. • ••

FIGURE 5.1
Probability density

function for diastolic
blood pressure in

35-44-year-old men

o 80

Diastolic bp (mm Hg)

EXAMPLE 5.4 Cardiovascular Disease Serum triglycerides is an asymmetric, positively skewed, contin-
uous random variable whose probability density function appears in Figure 5.2. • ••

FIGURE 5.2
Probability density
function for serum

tnglycendes

o 50 100 150
Serum triglycerides (mg/dL)

The cumulative distribution function is defined similarly to that for a discrete
random variable (Section 4.6).
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DEFINITION 5.2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The cumulative distribution function for the random variable X evaluated at the point a is
defined as the probability that X will take on values <a. It is represented by the area under the
probability density function to the left of a. •

EXAMPLE 5.5 Obstetrics The probability density function for the random variable representing the distribution
of birthweights (oz) in the general population is given in Figure 5.3. The cumulative distribution
function evaluated at 88 oz = Pr(X ~ 88) is represented by the area under this curve to the
left of 88 oz. The region X ~ 88 oz has a special meaning in obstetrics, since 88 oz is the
cutoff point usually used by obstetricians for identifying low-birthweight infants. Such infants
are generally at higher risk for various unfavorable outcomes, such as mortality in the first year
of life. • ••

FIGURE 5.3
Cumulative distrioufion
function evaluated at

88 oz for the
cisfrioulion of

birthwelghts In the
general population

o

Pr(X::::; 88)

\
88 120

Birthweight (oz)

Generally, a distinction will not be made between the probabilities Pr(X ~ x)
and Pr(X < x) when X is a continuous random variable. The reason is that they
represent the same quantity, because the probability of individual values is 0, that is,
Pr(X = x) = O.

The expected value and variance for continuous random variables have the same
meaning as for discrete random variables (Sections 4.4 and 4.5). However, the math­
ematical definition of these terms is beyond the scope of this book.

DEANRION ~3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The expected value of a continuous random variable X, denoted by E(X), or 11-, is the average
value taken on by the random variable. _

DEANRION ~4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The variance of a continuous random variable X, denoted by Var(X) or u 2 , is the average
squared distance of each value of the random variable from its expected value. The standard
deviation, or a, is the square root of the variance, that is, a = YVar(X). _

EXAMPLE 5.6 Hypertension The expected value and standard deviation of the distribution of diastolic blood
pressures in 35-44-year-old men are 80 mm Hg and 12 mm Hg, respectively. • ••

SECTION 5.3 The Normal Distribution

The normal distribution is the most widely used continuous distribution. It is also
frequently referred to as the Gaussian distribution, after the well-known mathematician,
Gauss.
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108 CHAPTER 5 / CONTINUOUS PROBABiLITY DISTRiBUTIONS

EXAMPLE 5.7 Hypertension The distribution of body weights or of diastolic blood pressures for a group of
35-44-year-old males will follow a normal distribution. • ••

Many other distributions that are not themselves normal can be made normal by
transforming the data onto a different scale.

EXAMPLE 5.8 Cardiovascular Disease The distribution of serum-triglyceride concentrations from this same
group of 35-44-year-old males is likely to be positively skewed. However, the log transformation
of these measurements will usually follow a normal distribution. • ••

Generally speaking, any random variable that can be expressed as a sum of many
other random variables can be well approximated by a normal distribution.

EXAMPLE 5.9 Infectious Disease The distribution of the number of lymphocytes in a differential of 100
white blood cells (refer to Example 4.15 for the definition of a differential) will tend to be
normally distributed, since this random variable is a sum of 100 random variables, each rep­
resenting whether or not an individual cell is a lymphocyte. • ••

Thus, because of its omnipresence, the normal distribution is vital to statistical
work, and most of the estimation procedures and hypothesis tests that we will study
are based on the assumption that the random variable being considered has an under­
lying normal distribution.

Another important area of application of the normal distribution is as an approx­
imating distribution to other distributions. The normal distribution is generally more
convenient to work with than any other distribution, particularly in hypothesis testing.
Thus, if an accurate normal approximation to some other distribution can be found,
then we will often use it.

DEANnlON ~5 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The normal distribution is defined by its probability density function, which is given as

-00 < x < 00

for some parameters p." CT, where CT> O. •
The exp function merely implies that the quantity to the right in brackets is the

power to which "e" (=2.71828) is raised. A plot of this probability density function
is given in Figure 5.4.
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THE NORMAL D,STRIBUTION / SECTION 5.3 109

The density function follows a bell-shaped curve, with the most frequently occur­
ring value at J.L. The curve is symmetric about J.L, with points of inflection on each
side of J.L at J.L - o and J.L + a, respectively. A point of inflection is a point where
the slope of the curve changes direction. In Figure 5.4, the slope of the curve increases
to the left of J.L - a and then starts to decrease to the right of J.L - a and continues
to decrease until reaching J.L + a, after which it starts increasing again. Thus, the
distances from J.L to the points of inflection provide a good visual sense of the magnitude
of the parameter cr.

You may wonder why the parameters J.L and cr2 have been used to define the
normal distribution when the expected value and variance of an arbitrary distribution
were previously defined as J.L and cr2. Indeed, from the definition of the normal
distribution it can be shown, using calculus methods, that J.L and cr2 are, respectively,
the expected value and variance of this distribution.

EXAMPLE 5.10 For diastolic blood pressure the parameters might be fL = 80 mm Hg, (I = 12 mm Hg; for
birthweight they might be u. = 120 OZ, (I = 15 oz. • ••

Interestingly, the entire shape of the normal distribution is determined by the two
parameters J.L and cr2. If two normal distributions with the same variance cr2 and
different means J.L1> J.L2, where J.L2 > J.Ll, are compared, then their density functions
will appear as in Figure 5.5.

FIGURE 5.5 f(x)
Comparison of two

normal distributions with
the same variance

and different means

o

Similarly, two normal distributions with the same mean but different variances
(cr~ > crT) can be compared, as shown in Figure 5.6. Note that the area under any
normal density function must be 1. Thus, the two normal distributions shown in Figure
5.6 must cross, since otherwise one curve would remain completely above the other
and the areas under both curves could not simultaneously be 1.

DERNRION ~6 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
A normal distribution with mean JL and variance u 2 will generally be referred to as an
N(j.L, (I2) distribution. _

Note that the second parameter is always the variance cr2 and not the standard
deviation cr.

Another property of the normal distribution is that the height = 1/(\/2;cr). Thus,
the height is inversely proportional to cr. This helps us to visualize a, since the height

.,
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110 CHAPTER 5 / CONTINUOUS PROBABILITY DISTRIBUTIONS

FIGURE 5.6 f(x)
Comporlsorl of two

normal dls"rlOUtlOrlS With
the some mean and

different vononoes

o j.1
x

of the N(iL, uT) distribution in Figure 5.6 is greater than the height of the N(iL, u~)

distribution.

DEANITION ~7 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

A normal distribution with mean 0 and variance 1 will be referred to as a standard, or unit,
normal distribution. This distribution is denoted by N(O, 1). •

We will see that any information concerning an N(iL, ( 2) distribution can be
obtained from appropriate manipulations of an N(O, 1) distribution.

SECTION 5.4 Properties of the Standard Normal Distribution

To become familiar with the N(O, 1) distribution, some of its properties will be
reviewed. First, the probability density function in this case reduces to

-00 < x < +00
1

f(x) = \/2; e(-1/2)x2,~'-------
This distribution is symmetrical about 0, since f(x) = f( - x), and is depicted in

Figure 5.7.

It can be shown that about 68% of the area under the normal density lies between +1 and
-1, about 95% of the area lies between +2 and -2, and about 99% lies between +2.5 and
-2.5.
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FIGURE 5.7
Probability density

function for 0 stondard
normol distribution
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I(x)

I(x) = I e( - 1/2)x'
O\)2;rr

o x

FIGURE 5.8
Empirical properties of

the stondard normol
dislrioution

These relationships can be expressed more precisely by saying that

Pr(-l < X < + 1) = .6827 Pr(-1.96 < X < +1.96) .95

Pr(-2.576 < X < +2.576) = .99

Thus, the standard normal distribution slopes off very rapidly, and absolute values
greater than 3 are unlikely. These relationships are depicted in Figure 5.8.

I(x)

-2.576 -1.96 -I 0 1.96 2.576,
,
,

, ,
'-68% of area -,

• 95% of area ..
'. 99% of area •

Tables of the area under the normal density function, or so-called normal tables,
take advantage of the symmetry properties of the normal distribution and generally
are concerned with areas for positive values of x.

DEFINITION 5.8 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The cumulative distribution function for a standard normal distribution is denoted by

<P(x) = Pr(X ~ x)

where X follows an N(O, 1) distribution. This function is depicted in Figure 5.9. •
DEFINITION 5.9 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The symbol - is used as shorthand for the phrase "is distributed as." Thus, X - N(O, 1) means
that the random variable X is distributed as an N(O, I) distribution.
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FIGURE 5.9
Cumulotlve distributlO'l

furctlon [<I>[x)J 'or 0

standard normo
random voriobo

Pr(X:S: x) = cD(x) =
area to the left of x

o x

f(x)

5.4.1 Using Normal Tables

Under column A in Table 3 of the Appendix, <I>(x) for various positive values of x
for a standard normal distribution are presented. This cumulative distribution function
is depicted in Figure 5.10. Notice that the area to the left of 0 is 0.5. Furthermore,
the area to the left of x approaches 0 as x becomes small and approaches I as x becomes
large.

--------------------FIGURE 5.10
Cumulative distribution

function for a standard
normal dls'rll:xJtlOn

[<I> [x)]

..
-1.96

EXAMPLE 5.11 If

-0.5 o
x

x ~ N(O, 1)

0.5

.84

1.0

.975

1.96

then find

SOLUTION From Table 3, column A,

Pr(X ~ 1.96) and Pr(X ~ 1)

<1>(1.96) = .975 and <1>(1) = .8413 •••

~ Symmetry Properties of the Standard Normal Distribution

From the symmetry properties of the standard normal distribution,

cD(-x) = Pr(X ~ -x) = Pr(X?: x) = 1 - Pr(X ~ x) = 1 - <I>(x)

This symmetry property is depicted in Figure 5.11 .

The right-hand tail of the standard normal distribution = Pr(X ;?: x) is provided
in column B of Table 3.
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FIGURE 5.11
1!lustratlon of the

symmetry properties of
the norma! distribution

EXAMPLE 5.12 Calculate

if

-x

lex)

Pr(X ~ -1.96)

x - N(O, I)

x

SOLUTiON Pr(X ~ - 1.96) = Pr(X ~ 1.96) = .0250 from column B of Table 3 •••
Furthermore, for any numbers a, b, we have Pr(a ",; X ",; b) = Pr(X ",; b)

Pr(X"'; a) and thus we can evaluate Pr(a ",; X ",; b) for any a, b from Table 3.

EXAMPLE 5.13 Compute

if

SOLUTiON

Pr(-I ~ X ~ 1.5)

X-N(O, I )

Pr(-I ~ X ~ 1.5) = Pr(X ~ 1.5) - Pr(X ~ -1)

= Pr(X ~ 1.5) - Pr(X ~ 1) = .9332 - .1587

= .7745 •••

EXAMPLE 5.14 Pulmonary Disease Forced Vital Capacity (FVC) is a standard measure of pulmonary function
and represents the volume of air a person can expel in 6 seconds. A topic of current research
interest is to look at potential risk factors, such as cigarette smoking, air pollution, or the type
of stove used in the home, that may affect FVC in grade school children. One problem is that
pulmonary function is affected by age, sex, and height, and these variables must be corrected
for before looking at other risk factors. One way to make these adjustments for a particular
child is to find the mean /L and standard deviation a for children of the same age (in I-year
age groups), sex, and height (in 2-in. height groups) from large national surveys and compute
a standardized FVC, which is defined as (x - /L)/ a, where x is the original FVC. The
standardized FVC would then approximately follow an N(O, 1) distribution. Suppose that a ehild
is considered in poor pulmonary health if his or her standardized FVC < -1.5. What percentage
of children are in poor pulmonary health?

SOLUTiON Pr(X < -1.5) = Pr(X > 1.5) = .0668

Thus, about 7% of children are in poor pulmonary health. •••
In many instances we will be concerned with tail areas on either side of 0

for a standard normal distribution. For example, the normal range for a biological
quantity is often defined by a range within x standard deviations of the mean for
some specified value of x. The probability of a value falling in this range is given by
Pre - x ",; X ",; x) for a standard normal distribution. This quantity is tabulated in
column D of Table 3 for various values of x.
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EXAMPLE 5.15 Pulmonary Disease Suppose a child is considered to have normal lung growth if his or her

standardized FVC is within 1.5 standard deviations of the mean. What proportion of children
are within the normal range?

SOLUTION Compute Pr( -1.5 ::;; X ::;; 1.5). Under 1.50 in Table 3, column D, this quantity is given as
.8664. Thus, about 87% of children are considered to have normal lung growth using this
definition. • ••

Finally, in column C of Table 3, the area under the standard normal density from
ato X is provided, since these areas will occasionally prove useful in work on statistical
inference.

EXAMPLE 5.16 Find the area under the standard normal density from 0 to 1.45.

SOLUTION Refer to column C of Table 3 under 1.45. The appropriate area is given by .4265. • ••

Of course, the areas given in columns A, B, C, and D are redundant in that
all computations concerning the standard normal distribution could be performed
using anyone of these columns. In particular, we have seen that B(x) = 1 - A(x).
Also, from the symmetry of the normal distribution, we can easily show that C(x) =

A(x) - .5, D(x) = 2 x C(x) = 2 x A(x) - 1.0. However, this redundancy is deliberate,
since for some applications one or the other of these columns will be more convenient
to use.

The percentiles of a standard normal distribution are often referred to in statistical
inference. For this purpose the following definition is introduced:

DEFINITION 5.10 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The (100 X u)th percentile of a standard normal distribution is denoted by Zu' It is defined by
the relationship

Pr(X < zu) = u,

Zu is depicted graphically in Figure 5.12.

where X - N(O, 1) •

FIGURE 5.12
Graphical display of

the [100 x u]th
percentile of a

standard normal
distribution (zJ

f(x)

Area =u

o
--------------j-------I.--------- x

The function Zu is sometimes referred to as the Inverse Normal Function. In
previous uses of the normal table, we were given a value x and have used the normal
tables to evaluate the area to the left of x (i.e., <I>[xD for a standard normal distribution.
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To obtain zu' we perform this operation in reverse. Thus, to evaluate zu' we must find
the area u in column A of Table 3 and then find the value Zu that corresponds to this
area. If u < 0.5, then we use the symmetry properties of the normal distribution to
obtain Zu = -Zl-u' where Zl-u can be obtained from Table 3.

EXAMPLE 517 Compute

SOLUTION From Table 3 we have that

Z975' Z95' Z5' and Z025

Thus,

<1>(1.96) = ,975

<1>(1.645) = ,95

<1>(0) = .5

<1>(-1.96) = 1 - <1>(1.96) = 1 - .975 = .025

Z975 = 1.96

z95 = 1.645

Z5 = 0

Z025 = -1.96 •••
The percentiles Zu will be frequently used in our work on hypothesis testing in

Chapters 7-13.

SECTION 5.5 Conversion from an N(IL, (T2) Distribution
to an N(O, 1) Distribution

EXAMPLE 518 Hypertension Suppose a borderline hypertensive is defined as a person whose diastolic blood
pressure is between 90 and 95 mm Hg inclusive, and the subjects arc 35-44-ycar-old males
whose blood pressures are normally distributed with mean 80 and variance 144. What is the
probability that a randomly selected person from this population will be a borderline hyper­
tensive? This question can be restated more precisely:

If X - N(80, 144)

then what is Pr(90 < X < 95)

(The solution is given on page 118.) •••

More generally, the following question can be asked: If X ~ N(J-L, (T2), then what
is Pr(a < X < b) for any a, b? The basic idea is to convert a probability statement
about an N(J-L, (T2) distribution to an equivalent probability statement about an
N(O, 1) distribution. Consider the random variable Z = (X - J-L)/ (T. We can show that
the following relationship holds:

z ~ N(O, 1).

~ If

then

and z = (X - p,)/(T
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To see this, compute the expected value and variance of Z. To accomplish this, keep
in mind that the expected value and variance have the same properties as the sample
mean and variance upon addition of and/or multiplication by a constant. Specifically,
for any constant c,

E(X + c) = E(X) + c

E(cX) = cE(X)

Var(X + c) = Var(X)

Var(cX) = (.2Var(X)

Therefore, applying these principles,

E(Z) = E[ X : J1-] = (~ )E(X - J1-) = (~) [E(X) - E(J1-)]

= (~) [E(X) - J1-] = (~ )(J1- - J1-) = °
Var(Z) = var[ X : J1-] = (:2 )var(x - J1-)

= (:2 )var(x) = (:2 )a2
= 1

Thus, the expected value of Z is °and the variance of Z is 1. It is also true that
normality is preserved when converting from the random variable X to the random
variable Z = (X - J1-)/ a, but to show this is beyond the scope of this book. Therefore,
Z ~ N(O, 1).

We now wish to convert Pr(a < X < b) into a probability statement about Z,
since Z is a standard normal random variable and tables are available only for the
standard normal distribution. This conversion is given as follows:

~ Evaluation of Probabilities for Any Normal Distribution via Standardization

If X - N(p., ( 2) and Z = (X, - p.)/cr

then Pr(a < X < b) = pr( a : p. < Z < b : p.) = <P[(b - p.)/ rr] - <P[(a - p.)/ u]

Since the <P function, which is the cumulative distribution function for a standard normal
distribution, is given in column A of Table 3 of the Appendix, probabilities for any normal
distribution can now be evaluated. This procedure is depicted in Figure 5.13.

To see this, note that a < X < b if and only if (a - J1-)/ a < Z < (b - J1-)/ a.
To demonstrate this, note that the inequality a < X < b can be written as two
inequalities, a < X and X < b. If J1- is subtracted from both sides of each inequality,
we get

and X-J1-<b-J1-
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FIGURE 5.13
Evaluation of

probabilities for any
normal distribution via

standardization

!(x)

_--==---+- ----.L__---L-\-.L-__-==-- X

These two probabilities
are the same.

--==---------+-----L-L------.:.==--------z

Also, if both sides of each inequality are divided by a, we obtain

a-J.L X-J.L
_----!'--- < ---''---

a a

or upon rewriting,

and

or

_X_---'-J.L < b - J.L
a a

a - J.L < Z < _b_------'J.L_
a a

Therefore, it follows that

Pr(a < X < b) = pr[ a : J.L < Z < b : J.L ]

However, since Z ~ N(O, 1),

Pr(a < X < b) = -l a : J.L < Z < b : J.L] = <1>[ b : J.L] _ <1>[ a : J.L ]

This procedure is known as standardization of a normal variable.
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SOLUTION TO
EXAMPLE 518

The probability of being a borderline hypertensive among the group of 35-44-year-old males

can now be calculated.

(
90 - 80 95-80)

Pr(90 < X < 95) = Pr 12 < Z < 12

= Pr(0.83 < Z < 1.25) = <1>(1.25) - <1>(0.83)

= .8944 - .7967 = .098

Thus, approximately 9.8% of this population wiII be borderline hypertensive. •••

EXAMPLE 519 Botany Suppose that tree diameters of a certain species of tree from some defined forest area
are assumed to be normally distributed with mean 8 in. and standard deviation 2 in. Find the
probability of a tree having an unusually large diameter, which is defined as > 12 in.

SOLUTION We have X - N(8, 4) and require

(
12 - 8)

Pr(X> 12) = 1 - Pr(X < 12) = 1 - Pr Z < 2

= 1 - Pr(Z < 2.0) = 1 - .977 = .023

Thus, 2.3% of trees from this area have an unusually large diameter. •••

c: The general principle is that for any probability statement concerning normal random variables
of the form Pr(a < X < b), the population mean JL is subtracted from each boundary point
and divided by the standard deviation cr to obtain an equivalent probability statement for the
standard normal random variable Z,

Pr[(a - JL)/u < Z < (b - JL)/u]

The standard normal tables are then used to evaluate this latter probability.

EXAMPLE 5.20 Cerebrovascular Disease Diagnosing stroke strictly on the basis of clinical symptoms is
difficult. A standard diagnostic test used in clinical medicine to detect stroke in patients is the
angiogram. This test has some risks for the patient, and several noninvasive techniques have
been developed that are hoped to be as effective as the angiogram. One such method utilizes
the measurement of cerebral blood flow (CBF) in the brain, since stroke patients tend to have
lower levels of CBF than normal. Assume that in the general population, CBF is normally
distributed with mean 75 and standard deviation 17. A patient is classified as being at risk for
stroke if his or her CBF is less than 40. What proportion of normal patients will be mistakenly
classified as being at risk for stroke?

SOLUTION Let X be the random variable representing CBF. Then X ~ N(75, 172) = N(75, 289). We want
to find Pr(X < 40). We standardize the limit of 40 so as to use the standard normal distribution.
The standardized limit is (40 - 75)/17 = -2.06. Thus, if Z represents the standardized normal
random variable = (X - JL)/a, then

Pr(X < 40) = Pr(Z < -2.06)

= <1>(-2.06) = 1 - <1>(2.06) = 1 - .9803 = .020

Thus, about 2.0% of normal patients will be incorrectly classified as being at risk for stroke .

•••
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EXAMPLE 5.21 Ophthalmology Glaucoma is a disease of the eye that is manifested by high intraocular
pressure. The distribution of intraocular pressure in the general population is approximately
normal with mean 16 mm Hg and standard deviation 3 mm Hg. If the normal range for intraocular
pressure is considered to be between 12 mm Hg and 20 mm Hg, then what percentage of the
general population would fall within this range?

SOLUTION We wish to calculate Pr(12 :S X :S 20), where X ~ N(l6, 9). The limits 12 and 20 must
first be standardized so as to use the standard normal tables to evaluate this probability. The
standardized limits are (12 - 16)/3 = -1.33 and (20 - 16)/3 = +1.33. Thus, we evaluate
Pre -1.33 :S Z :S 1.33), where Z follows a standard normal distribution.

Pr(-1.33:S Z:S 1.33) = Pr(Z:S 1.33) - Pr(Z:S -1.33)

= Pr(Z :S 1.33) - [1 - Pr(Z :S 1.33)1

= 2Pr(Z:S 1.33) - 1 = 2(.9082) - I = .816

Alternatively, Pre -1.33 :S Z :S 1.33) could be evaluated directly from the 1.33 row under
column D of Table 3 of the Appendix, yielding a probability of .8165. Thus, 81.6% of the
population have intraocular pressures in the normal range. These calculations are depicted in
Figure 5.14. • ••

FIGURE 5.14
Calculation of the

proportion of people
With Intraocular

pressures in tr',e r-orrnol
range

f(x)

Pr(l2 :s: X:S: 20)

Area in the original
/ scale =81.6%

-+-----'--L---------'----------'-----x
o

fez)

12 16 20

Pr(-1.33 :s: z:s: 1.33)

Equivalent area in the
/ standardized scale = 81.6%

_---==- -L- '-- _

-1.33 o 1.33

SECTION 5.6 Linear Combinations of Random Variables

In work on statistical inference, the use of sums or differences or more complicated
linear functions of random variables (either continuous or discrete) will often arise.
For this reason, the properties of linear combinations of random variables are important
to discuss.

DERNITION 5A1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

A linear combination L of the random variables Xl' . .
form L = c1X j + ... + cnXw

, X; is defined as any function of the

•
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EXAMPLE 5.22 Renal Disease Suppose Xl' Xzrepresent serum-creatinine levels for two different individuals

with end-stage renal disease. Represent the sum, difference, and average of the random variables
XI' X 2 as linear combinations of the random variables XI' X2 .

SOLUTION The sum is XI + X 2 , where Cl = 1, C2 = 1. The difference is Xl - X 2 , where C1 = I, C2 =
-1. The average is (XI + X2)/2, where CI = 0.5, C2 = 0.5. • ••

It will often be necessary to compute the expected value and variance of linear com­
binations of random variables. To find the expected value of L, the principle that the
expected value of the sum of n random variables is the sum of the n respective expected
values is used. Applying this principle,

E(L) = E(C1X1 + + cnXn)

= E(C1X 1) + + E(cnXn) = c1E(X j) + ... + cnE(Xn)

~ Expected Value of Linear Combinations of Random Variables

The expected value of the linear combination L = 2:;~, CiXi is E(L) = 2:;~ Ic;E(X;).

EXAMPLE 5.23 Renal Disease Suppose the expected values of serum creatinine for the two individuals in
Example 5.22 are 1.5 and 1.3, respectively. What is the expected value of the average serum­
creatinine level of these two individuals?

SOLUTION The expected value of the average serum-creatinine level = E(0.5XI + 0.5X2) = 0.5E(X,) +
0.5E(X2) = 0.75 + 0.65 = 1.4. • ••

To compute the variance of linear combinations of random variables, we assume that
the random variables are independent. Under this assumption, it can be shown that
the variance of the sum of two random variables is the sum of the respective variances.
Applying this principle,

Var(L) = Var(c1X1 + + cnXn)

= Var(cjX1) + + Var(cnXn) = et Var(X1) + ... + c~ Var(Xn)

since

~ Variance of Linear Combinations of Random Variables

The variance of the linear combination L = 2:;~1 CiXi, where Xl> ... , Xn are independent
is Var(L) = 2:;~1 CT Var(Xi ) ·

EXAMPLE 5.24 Renal Disease Suppose Xl> X2 are defined as in Example 5.22. If we know that Var(X I ) =

Var(X2 ) = 0.25, then what is the variance of the average serum-creatinine level over these two
people?
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SOl UTION We wish to compute Var(0.5X I + 0.5X2). Applying (5.6),

Var(0.5X] + 0.5X2) = (0.5)lVar(X l ) + (0.5)2Var(X2)

= 0.25(0.25) + 0.25(0.25) = 0.125 •••
The results for the expected value and variance of linear combinations in (5.5) and
(5.6) do not depend on the assumption of normality. However, linear combinations of
normal random variables are often of specific concern. It can be shown that any linear
combination of normal random variables is itself normally distributed. This leads to
the following important result:

If Xl' ... ,Xn are independent normal random variables with expected values ILl' ... , ILn

and variances (J"T, ... , (J"~, and L is any linear combination = L;~ I CiXi, thenL is normally
distributed with

n

expected value = E(L) = L CiILi
i~l

n

and variance = Var(L) = L CT(J"T
i~l

EXAMPLE 5.25 Renal Disease If XI' X 2 are defined as in Examples 5.22-5.24 and are each normally dis­
tributed, then what is the distribution of the average = 0.5X] + 0.5X2?

501 UTION Based on the solutions to Examples 5.23 and 5.24, we know that E(L) = lA, Var(L) = 0.125.
Therefore, (Xl + X2)/2 ~ N(1.4, 0.125). • ••

SECTION 5.7 Normal ApprOXimation to the Binomial Distribution

In Chapter 4 the binomial distribution was introduced to assess the probability of k
successes in n independent trials, where the probability of success (p) is the same for
each trial. If n is large, the binomial distribution is very cumbersome to work with
and an approximation is easier to use rather than the exact binomial distribution. The
normal distribution is often used to approximate the binomial since it is very easy to
work with. The key question is, When will the normal distribution provide an accurate
approximation to the binomial?

Suppose a binomial distribution has parameters nand p. If n is large and p is
either near 0 or near 1, then the binomial distribution will be very positively or
negatively skewed, respectively. See Figure 5.15(a) and (b). Similarly, when n is
small, for any p, the distribution will tend to be skewed. See Figure 5.15(c). However,
if n is moderately large and p is not too extreme, then the binomial distribution will
tend to be symmetric and will be well approximated by a normal distribution. See
Figure 5.15(d).

We know from Chapter 4 that the mean and variance of a binomial distribution
are np and npq, respectively. A natural approximation to use is a normal distribution
with the same mean and variance, that is, N(np, npq). Suppose we want to compute
Pr(a ~ X ~ b) for some integers a, b, where X is binomially distributed with parameters
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FIGURE 5.15
SYITlrneJr y prooertles d
the binoroicl distribution
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(d) 11 =25. P = .4

x

nand p. This probability might be approximated by the area under the normal curve
from a to b. However, we can show empirically that a better approximation to this
probability is given by the area under the normal curve from a - ~ to
b + ~. This will generally be the case when any discrete distribution is approximated
by the normal distribution. Thus the following rule applies:

~ Normal Approximation to the Binomial Distribution

IfX is a binomial random variable with parameters nand p, then Pr(a ~ X ~ b) is approximated
by the area under an N(np, npq) curve from (a - ·n to (b + ·n. This rule implies that for
the special case a = b, the binomial probability Pr(X = a) is approximated by the area under
the normal curve from (a - ·n to (a + 4). The only exception to this rule is that Pr(X = 0)
and Pr(X = n) are approximated by the area under the normal curve to the left of 4and to
the right of n - 4, respectively.

We saw in Equation (5.7) that if Xl' ... , X; are independent normal random
variables, then any linear combination of these random variables L = 2::1 c;X; will
be normally distributed. In particular, if Cl = ... = c.; = 1, then a sum of normal
random variables L = 2:;=1X; will be normally distributed.

The normal approximation to the binomial distribution is a special case of a very
important statistical principle, the central-limit theorem, which is a generalization of
Equation (5.7). Under this principle, for large N, a sum of N random variables is
approximately normally distributed even if the individual random variables being
summed are not themselves normal.

DEFINITION 5.12 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Let Xi be a random variable that takes on the value 1 with probability p and the value 0 with
probability q = 1 - p. This type of random variable is defined as a Bernoulli trial. This is a
special case of a binomial random variable with n = 1. •
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We know from the definition of an expected value that E(Xi ) = l(p) + O(q)
p and that E(Xr) = 12(p) + 02(q) = p. Therefore,

Var(XJ = E(Xr) - [E(XJ]2 = P - p2 = p(l - p) = pq

Now consider the random variable

n

X= ~Xi
i=l

This random variable simply represents the number of successes among n trials.

EXAMPLE 5.26 Interpret XI' ... , X; and X in the case of the number of neutrophils among 100 white blood
cells (sec Example 4.15).

SOLUTION In this case, n = 100 and Xi = 1 if the i lh white blood cell is a neutrophil and Xi = 0 if the jlh

white blood cell is not a neutrophil, where i = 1, . . . , 100. X represents the number of
neutrophils among n = 100 white blood cells. • ••

Given Equations (5.5) and (5.6), we know that

E(X) = E(~l Xi) = P + P + ... + P = np

and

Var(X) = var(~ Xi) = ~ Var(Xi) = pq + pq + ... + pq = npq

Based on the normal approximation to the binomial distribution, we approximate
the distribution of X by a normal distribution with mean = np and variance = npq.
We discuss the central-limit theorem in more detail in section 6.5.3.

EXAMPLE 5.27 Suppose a binomial distribution has parameters n = 25, p = .4. How can PrO ~ X ~ 12) be
approximated?

SOLUTION We have np = 25(.4) = 10, npq = 25(.4)(.6) = 6.0. Thus, this distribution is approximated
by a normal random variable Y with mean 10 and variance 6. We specifically want to compute
the area under this normal curve from 6.5 to 12.5. We have

Pr(6.5 ~ y ~ 12.5) = <l>C2.~ 10) _ <1>( 6.5~10)

= <1>(1.02) - <1>( -1.43) = <1>(1.02) - [1 - <1>(1.43)]

= <1>(1.02) + <1>(1.43) - 1 = .8463 + .9235 - 1 = .770

This approximation is depicted in Figure 5.16. •••

EXAMPLE 5.28 Infectious Disease Suppose we want to compute the probability that between 50 and 75 of
100white blood cells will be neutrophils, where the probability that anyone cell is a neutrophil
is .6. These values are chosen as proposed limits to the range of neutrophils in normal people
and we wish to predict what proportion of people will be in the normal range according to this
definition.
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124 CHAPTER 5 / CONTINUOUS PROBABILITY DISTRIBUTIONS

SOLUTION The exact probability is given by

The normal approximation is used to approximate the exact probability. The mean of the binomial
distribution in this case is 100(.6) = 60, and the variance is 100(.6)(.4) = 24. Thus, we find
the area between 49.5 and 75.5 for an N(60, 24) distribution. This area is

<1>(75.5 - 60) _ <1>(49.5 - 60) = <1>(3.16) - <1>(-2.14)
v'24 v'24

= <1>(3.16) + <1>(2.14) - 1

= .9992 + .9840 - 1 = .983

Thus, 98.3% of the people will be normal. •••

FIGURE 5.16
The approximation of
the binomial random

variable X with
parameters n = 25,

p = .4 by the normal
random variable Ywith

mean 10 and
variance 6

fey) Pr(7 s x s 12)=Pr(6.5::; Y::; 12.5)

•

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 Y

EXAMPLE 5.29 Infectious Disease Suppose a person is defined as abnormally high if the number of neutrophils
is ;?; 76 and abnormally low if the number of neutrophils is :!S 49. Calculate the proportion of
people that are abnormally high and low.

SOLUTION The probability of being abnormally high is given by Pr(X ;?; 76) = Prey ;?; 75.5), where X
is a binomial random variable with parameters n = 100, p = .6 and Y ~ N(60, 24). This latter
probability is

Similarly, the probability of being abnormally low is

(
49.5 - 60)

Pr(X:!S 49) = Prey :!S 49.5) = <I> v'24

= <1>( -2.14) = 1 - <1>(2.14)

= 1 - .9840 = .016

Thus, 0.1% of people will be abnormally high and 1.6% will be abnormally low. These prob­
abilities are depicted in Figure 5.17. • ••
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Abnormally
high

t

FIGURE 5.17
Normal opproxrrofion

to the dislobulion of
neutrophils

Abnormally
low

\

f(y)

Y - N(60, 24)

~Non,,"1

--------L---------.J--------'--------v

49.5 60 75.5

Under what conditions should this approximation be used?

The normal distribution is used with mean np and variance npq to approximate a binomial
distribution with parameters nand p when npq ? 5.

This condition will be satisfied if n is moderately large and p is not too small. To
illustrate this condition, the binomial probability distribution for p = .1, n = 10, 20,
50, and 100 is plotted in Figure 5.18(a) through (d) and p = .2, n = 10, 20, 50, and
100 is plotted in Figure 5.19(a) through (d) using a Statistical Analysis System (SAS)
plotting routine (PROC PLOT).

Notice that the normal approximation to the binomial distribution does not fit well
in Figure 5.18(a), n = 10, p = .1 (npq = 0.9), or Figure 5.18(b), n = 20, p = .1
(npq = 1.8). The approximation is marginally adequate in Figure 5. 18(c), n = 50,
p = .1 (npq = 4.5), where the right-hand tail is only slightly longer than the left­
hand tail. The approximation is quite good in Figure 5.18(d), n = 100, p = .1
(npq = 9.0), where the distribution appears to be quite symmetric. Similarly, for
p = .2, although the normal approximation is not good for n = 10 [Figure 5.19(a),
npq = 1.6], it becomes marginally adequate for n = 20 [Figure 5.19(b), npq = 3.2]
and quite good for n = 50 [Figure 5.19(c), npq = 8.0] and n = 100 [Figure 5.19(d),
npq = 16.0].

Note that the conditions under which the normal approximation to the binomial
distribution works well (namely, npq ?: 5), which correspond to n moderate and p not
too large or too small, are generally not the same as the conditions for which the
Poisson approximation to the binomial distribution works well [n large (?: 100) and
p very small (p ~ .a1)]. However, occasionally both of these criteria will be met. In
such cases, for example, when n = 1000, P = .01, the two approximations will yield
about the same results. The normal approximation is preferable because it is easier to
apply.

SECTION 5.8 Normal Approximation to the Poisson Distribution

The normal distribution can also be used to approximate discrete distributions other
than the binomial distribution, particularly the Poisson distribution. The motivation
for this is that the Poisson distribution is cumbersome to use for large values of /-L.
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The same technique is used as for the binomial distribution; that is, the means
and variances of the Poisson distribution and the approximating normal distribution
are equated.

~ Normal Approximation to the Poisson Distribution

A Poisson distribution with parameter J1, is approximated by a normal distribution with mean
and variance both equal to J1,. Pr(X = x) is approximated by the area under an N(IL, J1,)

density from x - ! to x + ! for x > 0 or by the area to the left of! for x = O. This
approximation is used for J1, ? 10.

The Poisson distribution for J.L = 2,5, 10, and 20 is plotted using the SAS plotting
program (PROC PLOT) in Figure 5.20(a) through (d), respectively. The normal approx­
imation is clearly inadequate for J.L = 2 [Figure 5.20(a)], marginally adequate for
J.L = 5 [Figure 5.20(b)], and adequate for J.L = 10 [Figure 5.20(c)] and u. = 20
[Figure 5.20(d)].

EXAMPLE 5.30 Bacteriology Consider again the distribution of the number of bacteria in a petri plate of area
A. Assume that the probability of observing x bacteria is given exactly by a Poisson distribution
with parameter J1, = AA, where A = 0.1 and A = 100 cm-. Suppose 20 bacteria are observed
in this area. How unusual is this event?

SOLUTION Compute

where

We have

Pr(X? 20) = Prey ? 19.5)

Y ~ N(AA, AA) = N(lO, 10)

(
19.5 - 10)

Pr(Y? 19.5) = 1 - Prey ~ 19.5) = 1 - cI> V10

(
9.5 )1 - cI> -- = 1 - cI>(3.00)

V10
1 - .9987 = .0013

Thus, 20 or more colonies in 100 em- would be expected only 1.3 times in 1000 plates, a rare
event indeed. • ••

SECTION 5.9 Summary

In this chapter continuous random variables were discussed. The concept of a prob­
ability density function, which is the analogue to a probability mass function for discrete
random variables, was introduced. In addition, generalizations of the concepts of
expected value, variance, and cumulative distribution were presented for continuous
random variables.

The normal distribution, the most important continuous distribution, was then
studied in detail. The normal distribution is often used in statistical work, since many
random phenomena follow this probability law, particularly those that can be expressed
as a sum of many random variables. It was shown that the normal distribution is

Farzin
Highlight



FIGURE 5.20(a)(b) .30 +

SAS plot of POisson
distribution

.25 ...

• 20

.15 +

:=

':'
.;:

.10

.05

.00 +
-+-----------+-----------+-----------+~~---------+---~- - - -- - -+ - - - - - - - - - - - + - -- - - - - - - - - +-- - - - - - - --- + -- - - - - --- - - + - - - - - - - -- - - + - -

8 9 10

(a) j.1 2

.30 +

.25 +

.20 +

.15

:=

':'
(c

.10

.05

.00 +
-+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------+------

10 11 11 13 14 15 16

(b) u = 5

131



FIGURE 5.20(c)(d)
SAS plot of POISSon

dlstnbution

.30 +

.25 -+

.20

.15

-:;

::.
~

.10 +

.05 +

.00 +* * .. * * * ..
-+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---t---+---+----------------

1 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(c) J.1 10
.30 +

.25

.20 +

.15 +

:;;

::.
~

.10 +

.05

.00

10 12 14 16 18 20 22 24 26 28 30 32 36 38 40

132

(d) J.1 = 20



PROBLEMS 133

indexed by two parameters, the mean J.L and the variance (F2. Fortunately, all com­
putations concerning any normal random variable can be accomplished using the
standard, or unit, normal probability law, which has mean 0 and variance 1. Normal
tables were introduced to use when working with the standard normal distribution.
Also, since the normal distribution is easy to use, it is often employed to approximate
other distributions. In particular, the focus was on the normal approximations to the
binomial and Poisson distributions. This is a special case of the central-limit theorem,
which is covered in more detail in Chapter 6. Also, to facilitate applications of the
central-limit theorem, the properties of linear combinations of random variables were
discussed.

In the next three chapters, the normal distribution is used extensively as a foun­
dation for work on statistical inference.

PROBLEMS

Cardiovascular Disease
Since serum cholesterol is related to age and sex, some
investigators prefer to express it in terms of z-scores. If

X-f..L
X = raw serum cholesterol, then z = ---, where f..L

(T

is the mean and (T is the standard deviation of serum
cholesterol for a given age-sex group. Suppose z is
regarded as a standard normal distribution.

* 5.1 What is Pr(z < 0.5)?

* 5.2 What is Pr(z > 0.5)?

* 5.3 What is Pr( -1.0 < z < 1.5)?

Suppose a person is regarded as having high cholesterol
if z > 2.0 and borderline cholesterol if 1.5 < z < 2.0.

* 5.4 What proportion of people have high cholesterol?

* 5.5 What proportion of people have borderline
cholesterol?

Nutrition
Suppose that total carbohydrate intake in 12-14-year-old
males is normally distributed with mean 124 g/1000 cal
and standard deviation 20 g/1000 cal.

5.6 What percentage of boys in this age range have car­
bohydrate intake above 140 g/1000 cal?

5.7 What percentage of boys in this age range have car­
bohydrate intake below 90 g/1000 cal?

Suppose boys in this age range that live below the poverty
level have a mean carbohydrate intake of 121 g/1000 cal
with a standard deviation of 19 g/ 1000 cal.

5.8 Answer Problem 5.6 for boys in this age range and
economic environment.

5.9 Answer Problem 5.7 for boys in this age range and
economic environment.

Diabetes
A number of clinical characteristics were ascertained in a
large group of subjects with insulin-dependent diabetes
mellitus (IDOM). Suppose the distribution of percentage
of ideal body weight in this group of patients is normal
with mean 110 and standard deviation of 13.

5.10 What percentage of subjects with IDOM are above
their ideal body weight, i.e., above 100% ideal body
weight?

5.11 What percentage of subjects with 100M are over­
weight (defined as 10% or more above ideal body weight)?

5.12 What percentage of subjects with IDOM are obese
(defined as 20% or more above ideal body weight)?

5.13 What percentage of subjects with IDOM are under­
weight (defined as 10% or more below ideal body weight)?

5.14 What percentage of subjects with IDDM have nor­
mal body weight (within 10% of ideal body weight)?

Pulmonary Disease
Many investigators have studied the relationship between
asbestos exposure and death due to chronic obstructive
pulmonary disease (COPD).

5.15 Suppose that among workers exposed to asbestos in
a shipyard in 1980, 33 died over a lO-year period from
COPD, whereas only 24 such deaths could be expected
based on statewide mortality rates. Is the number of deaths
due to COPD in this group excessive?

5.16 Twelve cases of leukemia are reported in people
living in a particular census tract over a 5-year period. Is
this number of cases abnormal if only 6.7 cases would be
expected on national cancer-incidence rates?
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TABLE 5.1 Mean and standard deviation of systole
blood pressure (mm Hg) In specnic age groups

5.25 Some studies suggest that carotene levels over
10,000 IU may protect against cancer. What percentage
of people have a dietary intake of at least 10,000 IV?

Suppose that each person took a carotene supplement pill
of dosage 5000 IV in addition to his or her normal diet.
Assume that the resulting distribution of In carotene is
normally distributed with mean 9.12 and standard devia­
tion 1.00.

5.26 What percentage of people would have an intake
from diet and supplements of at least 10,000 IV?

Hypertension
People are classified as hypertensive if their systolic blood
pressure is higher than a specified level for their age group,
according to the scheme in Table 5.1.

Assume that systolic blood pressure is normally dis­
tributed with mean and standard deviation given in Table
5.1 for the age groups 1-14 and 15-44, respectively.
Define a family as a group of 2 people in the age group
1-14 and 2 people in the age group 15-44. A family is
classified as hypertensive if anyone family member is
hypertensive.

* 5.27 What proportion of 1-14-year-olds are hyper­
tensive?

* 5.28 What proportion of 15-44-year-olds are hyper­
tensive?

* 5.29 What proportion of families are hypertensive?
(Assume that the hypertensive status of different members
of the family are independent random variables.)

* 5.30 Suppose an apartment building has 200 families liv­
ing in it. What is the probability that between 10 and 25
families are hypertensive?

Pulmonary Disease
Forced expiratory volume (FEV) is an index of pulmonary
function that measures the volume of air expelled after 1
second of constant effort. FEV is known to be influenced
by age, sex, and cigarette smoking. Assume that in 45­
54-year-old nonsmoking males FEV is normally distrib­
uted with mean 4.0 liters and standard deviation 0.5 liter.

Standard
Age group Mean deviation

115.0
140.0

Specified
hypertension level

5.0
10.0

105.0
125.0

1-14
15-44Cardiovascular Disease

Serum cholesterol is an important risk factor for coronary
disease. We can show that serum cholesterol is approxi­
mately normally distributed with mean 219 mg%/mL and
standard deviation 50 mg%/mL.

* 5.20 If the clinically desirable range for cholesterol is
< 200 mg%/mL, then what proportion of people have
clinically desirable levels of cholesterol?

* 5.21 Some investigators feel that only cholesterol levels
of over 250 mg%/mL indicate a high-enough risk for heart
disease to warrant treatment. What proportion of the pop­
ulation does this group represent?

* 5.22 What proportion of the general population have bor­
derline high-cholesterol levels-that is, > 200, but < 250
mg%/mL?

Nutrition, Cancer
Beta carotene is a substance that is hypothesized to prevent
cancer. A dietary survey was undertaken for the purpose
of measuring the level of beta carotene intake in the typical
American diet. Assume that the distribution of In carotene
is normal with mean 8.34 and standard deviation 1.00.
(Units are in In IV.)

5.23 What percentage of people have dietary carotene
levels below 2000 IV? (Note: In 2000 = 7.60.)

5.24 What percentage of people have dietary carotene
levels below 1000 IV? (Note: In 1000 = 6.91.)

Cancer
Previous census data have indicated that approximately
0.2% of women aged 45-54 will have had cervical cancer
at some point in their lives. However, the general feeling
is that the rate of cervical cancer has decreased.

5.19 If a new study by mail questionnaire is performed
and it is found that 100 out of 100,000 women have had
cervical cancer, then is this proportion consistent with the
census rate?

Cardiovascular Disease, Pulmonary Disease
The duration ofcigarette smoking has been linked to many
diseases, including lung cancer and various forms of heart
disease. Suppose we know that among men aged 30-34
who have ever smoked, the mean number of years they
smoked is 12.8 with a standard deviation of 5.1 years.
For women in this age group, the mean number of years
they smoked is 9.3 with a standard deviation of 3.2.

* 5.17 Assuming that the duration of smoking is normally
distributed, what proportion of men in this age group have
smoked for more than 20 years?

* 5.18 Answer Problem 5.17 for women.
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TABLE 5.2 Change in serum Vitamin E(mg/dL] in pilot study

* 5.46 Suppose a change of 0.30 mg/dL in serum levels
is proposed as a test criterion for compliance; that is, a

* 5.40 How large would x have to be in order that the
probability of a normal adult having x or more neutrophils
was :S;;1%?

Cancer
A treatment trial is proposed to test the efficacy of vitamin
E as a preventive agent for cancer. One problem with such
a study is how to assess compliance among study partic­
ipants. A small pilot study is undertaken to establish cri­
teria for compliance with the proposed study agents. In
this regard, 10 patients are given 400 IU/day of vitamin
E and 10 patients are given similar-sized tablets of placebo
over a 3-month period. Their serum vitamin-E levels are
measured before and after the 3-month period and the
change (3-month - baseline) is shown in Table 5.2.

n

10
10

sd

0.48
0.16

0.80
0.05

Mean

Blood Chemistry
In pharmacologic research a variety of clinical chemistry
measurements are routinely monitored closely for evidence
of side effects of the medication under study. Suppose
typical blood-glucose levels are normally distributed with
mean 90 mg/dL and standard deviation 38 mg/dL.

5.41 If the normal range is from 65-120 mg/dL, then
what percentage of values will fall in the normal range?

5.42 In some studies only values that are at least 1.5 times
as high as the upper limit of normal are identified as
abnormal. What percentage of values would fall in this
range?

5.43 Answer Problem 5.42 for 2.0 times the upper limit
of normal.

5.44 Frequently, tests that yield abnormal results are
repeated for confirmation. What is the probability that for
a normal person a test will be at least 1.5 times as high
as the upper limit of normal on two separate occasions?

5.45 Suppose that in a pharmacologic study involving
6000 patients, 75 patients have blood-glucose levels at
least 1.5 times the upper limit of normal on one occasion.
What is the probability that this result could be due to
chance?

Yitamin E
Placebo

Group

In comparably aged currently smoking males FEY is nor­
mally distributed with mean 3.5 liters and standard devia­
tion 0.6 liter.

5.31 If an FEY of less than 2.5 liters is regarded as show­
ing some functional impairment (occasional breathless­
ness, inability to climb stairs, etc.), then what is the
probability that a currently smoking male has functional
impairment?

5.32 Answer Problem 5.31 for a nonsmoking male.

Many people are not functionally impaired now but their
pulmonary function usually declines with age and they
eventually will be functionally impaired. Assume that the
decline in FEY over n years is normally distributed with
mean 0.03n and standard deviation 0.02n.

5.33 What is the probability that a 45-year-old man with
an FEY of 4.0 liters will be functionally impaired by the
age of 75?

5.34 Answer Problem 5.33 for a 25-year-old man with
an FEY of 4.0 liters.

Infectious Disease
The differential is a standard measurement made during a
blood test. It consists of classifying white blood cells into
the following 5 categories: (1) basophils, (2) eosinophils,
(3) monocytes, (4) lymphocytes, and (5) neutrophils. The
usual practice is to look at 100 randomly selected cells
under a microscope and count the number of cells within
each of the 5 categories. Assume that a normal adult will
have the following proportions of cells in each category:
basophils, 0.5%; eosinophils, 1.5%; monocytes, 4%; lym­
phocytes, 34%; and neutrophils, 60%.

* 5.35 An excess of eosinophils is sometimes consistent
with a violent allergic reaction. What is the exact prob­
ability that a normal adult will have 5 or more eosinophils?

* 5.36 An excess of lymphocytes is consistent with various
forms of viral infection, such as hepatitis. What is the
probability that a normal adult will have 40 or more
lymphocytes?

* 5.37 What is the probability that a normal adult will have
50 or more lymphocytes?

* 5.38 How many lymphocytes would have to appear in
the differential before you would feel that the "normal"
pattern was violated?

* 5.39 An excess of neutrophils is consistent with several
types of bacterial infection. Suppose an adult has x neu­
trophils. How large would x have to be in order that the
probability of a normal adult having x or more neutrophils
was :s;;5%?
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patient who shows a change of? 0.30 mg/dL is consid­

ered a compliant vitamin-E taker. If normality is assumed,
what percentage of the vitamin-E group would be expected
to show a change of at least 0.30 mg/dL?

* 5.47 Is the measure in Problem 5.46 a measure of sen­
sitivity, specificity, or predictive value?

* 5.48 What percentage of the placebo group would be
expected to show a change of not more than 0.30 mg/dL?

* 5.49 Is the measure in Problem 5.48 a measure of sen­
sitivity, specificity, or predictive value?

* 5.50 Suppose a new threshold of change, A mg/dL, is
proposed for establishing compliance. We wish to use a
level of A such that the compliance measures in Problems
5.46 and 5.48 forthe patients in the vitamin-E and placebo
groups are the same. What should A be? What would be
the compliance in the vitarnin-E and placebo groups using
this threshold level?

Mental Health

5.51 Refer to Tables 3.2 and 3.3. Suppose a study of
Alzheimer's disease is planned in more than one retirement
community. How many retired people need to be studied
to have a 90% chance of detecting at least 100 people with
Alzheimer's disease, assuming that the age-sex-specific
prevalence rates and age-sex distribution in Tables 3.2 and
3.3 hold?

5.52 Answer Problem 5.51 for 50 rather than 100 people.

Pulmonary Disease
Refer to the pulmonary function data in the Data Set
FEY.DAT on the data disk (see Problem 2.21). We are
interested in whether there is a relationship between smok­
ing status and level of pulmonary function. However, FEY
is affected by age and sex; also, smoking children tend to
be older than nonsmoking children. For these reasons,
FEY should be standardized for age and sex. To accom­
plish this, use the z-score approach outlined above in Prob­
lem 5.1, where the z-scores here are defined by age-sex
groups.

5.53 Plot the distribution of z-scores for smokers and
nonsmokers separately. Do these distributions look nor­
mal? Does there appear to be any relationship between
smoking and pulmonary function in these data?

5.54 Repeat the analyses in Problem 5.53 for the
subgroup of children 10+ years of age (since smoking is
very rare prior to this age). Do you reach similar
conclusions?

5.55 Repeat the analyses in Problem 5.54 separately for

boys and girls. Are your conclusions the same in the two
groups?

Note: Formal methods for comparing FEY's between
smokers and nonsmokers are discussed in the material on
statistical inference in Chapter 8.

Cardiovascular Disease
A clinical trial was conducted to test the efficacy of
nifedipine, a new drug for stopping chest pain in patients
with angina severe enough to require hospitalization. The
duration of the study was 14 days in the hospital unless
the patient was withdrawn prematurely from therapy, was
discharged from the hospital, or died prior to this time.
Patients were randomly assigned to either nifedipine or
propranolol and were given the same dosage of each drug
in identical capsules at level 1 of therapy. If pain did not
cease at this level of therapy, or if pain recurred after a
period of pain cessation, then the patient progressed to
level 2, whereby the dosage of each drug was increased
according to a prespecified schedule. Similarly, if pain
continued or recurred at level 2, then the patient progressed
to level 3, whereby the dosage of the anginal drug was
increased again. Patients randomized to either group were
allowed to receive nitrates in any amount that was deemed
clinically appropriate to help control pain.

The main objective of the study was to compare the
degree of pain relief with nifedipine and propranolol. A
secondary objective was to better understand the effects
of these agents on other physiologic parameters including
heart rate and blood pressure. Data on these latter param­
eters are given in the Data Set NIFED.DAT (on the data
disk); the format of this file is given in Table 5.3.

5.56 Describe the effect of each treatment regimen on
changes in heart rate and blood pressure. Do the distri­
bution of changes in these parameters look normal or not?

5.57 Compare graphically the effects of the treatment reg­
imens on heart rate and blood pressure. Do you notice any
difference between treatments?
(Note: Formal tests for comparing changes in heart rate
and blood pressure in the two treatment groups are covered
in Chapter 8.)

Hypertension
It is well known that there are racial differences in blood
pressure between white and black adults. These differences
generally do not exist between white and black children.
Since aldosterone levels have been related to blood­
pressure levels in adults in previous research, an inves­
tigation was performed to look at aldosterone levels among
black and white children [1].

Farzin
Highlight



TABLE 5.3 Format of NIFEDDAT

Column Variable Code

1-2 ID
4 Treatment group N = nifedipine/

P = propanolol
6-8 Baseline heart rate beats/min

10-12 Level 1 heart rate" beats/min
14-16 Level 2 heart rate beats/min
18-20 Level 3 heart rate beats/min
22-24 Baseline systolic bp" mmHg
26-28 Level 1 systolic bp" mmHg
30-32 Level 2 systolic bp mmHg
34-36 Level 3 systolic bp mmHg

almmediately prior to randomization
bHighest heart rate and systolic bp at baseline and each level of
therapy, respectively
Note: Missing values indicate that either:
(I) the patient withdrew from the study prior to entering this level
of therapy;
(2) the patient achieved pain relief prior to reaching this level of
therapy; or,
(3) the patient encountered this level of therapy, but this particular
piece of data was missing.

* 5.58 If the mean plasma-aldosterone level in black chil­
dren was 230 pmoI/L with sd = 203 pmoI/L, then what
percentage of black children have levels ~ 300 pmoI/L
if normality is assumed?

* 5.59 If the mean plasma-aldosterone level in white chil­
dren is 400 pmol/L with sd = 218 pmoI/L, then what
percentage of white children have levels ~ 300 pmol/L
if normality is assumed?

* 5.60 The distribution of plasma-aldosterone concentra­
tion in 53 white and 46 black children is shown in Figure
5.21. Does the assumption of normality seem reasonable?
Why or why not? (Hint: Qualitatively compare the
observed number of children who have levels below 300
pmoI/L with the expected number in each group under
the assumption of normality.)

Hepatic Disease
Suppose we observe 84 alcoholics with cirrhosis of the
liver, of whom 29 have hepatomas-that is, liver-cell
carcinoma. Suppose we know, based on a large sample,
that the risk of hepatoma among alcoholics without cir­
rhosis of the liver is 24%.

5.61 What is the probability that we observe exactly 29
alcoholics with cirrhosis of the liver who have hepatomas
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if the true rate of hepatoma among alcoholics (with or
without cirrhosis of the liver) is .24?

5.62 What is the probability of observing at least 29 hepa­
tomas among the 84 alcoholics with cirrhosis of the liver
under the assumptions in Problem 5.61?

5.63 What is the smallest number of hepatomas that
would have to be observed among the group of alcoholics
with cirrhosis of the liver in order for the hepatoma expe­
rience in this group to be different from the hepatoma
experience among alcoholics without cirrhosis of the liver?
(Hint: Use a 5% probability of getting a result at least as
extreme to denote differences between the hepatoma expe­
riences of the 2 groups.)

Hypertension
The Pediatric Task Force Report on Blood Pressure Control
in Children [2] reports blood-pressure norms for children
by age and sex group. The mean ± standard deviation for
17-year-old boys for diastolic blood pressure is 63.7 ±
11.4 mm Hg, based on a large sample.

5.64 One approach for defining elevated blood pressure
is to use 90 mm Hg-the standard for elevated adult dia­
stolic blood pressure-as the cutoff. What percentage of
17-year-old boys would have elevated blood pressure
using this approach?

5.65 Suppose there are 2000 I7-year-old boys in the I Ith
grade, of whom 25 have elevated blood pressure using the
criteria in Problem 5.64. Is this an unusually high number
of boys with elevated blood pressure? Why or why not?

Environmental Health

5.66 A study was conducted relating particulate air pol­
lution and daily mortality in Steubenville, Ohio [3]. On
average over the last 10 years there have been 3 deaths
per day. Suppose that on 90 high-pollution days-days
where the total suspended particulates are in the highest
quartile among all days-the death rate is 3.2 deaths per
day, or 288 deaths observed over the 90 high-pollution
days. Are there an unusual number of deaths on high­
pollution days?

Refer to the Data Set VALID.DAT (on the data disk)
described in Table 2.16.

5.67 Consider the nutrients saturated fat, total fat, and
total calories. Plot the distribution of each nutrient for both
the diet record (DR) and the food-frequency questionnaire
(FFQ). Do you think a normal distribution is appropriate
for these nutrients?
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Hint: Compute the observed proportion of women who
fall within 1, 1.5, 2.0, and 2.5 standard deviations of the
mean. Compare the observed proportions with the
expected proportions based on the assumption of
normality.

5.68 Answer Problem 5.67 using the In (nutrient)
transformation for each nutrient value. Is the normality
assumption more appropriate for log-transformed or
untransformed values, or neither?

5.69 A special problem arises for the nutrient alcohol
consumption. There is often a large number of nondrinkers
(alcohol consumption = 0) and another large group of
drinkers with alcohol consumption> O. The overall dis­
tribution of alcohol consumption appears bimodal. Plot
the distribution of alcohol consumption for both the DR
and the FFQ. Do the distributions appear unimodal or
bimodal? Do you think that the normality assumption is
appropriate for this nutrient?
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TABLE 5.4 Expectation of life and mortality rates, by age, race. and sex 1973

Expectation of life In years Mortality rate per 1,000 living at specified age

Age White Negro and other White Negro and other(years)
Total Male Female Male >=emale Total Mole Female Male Female

40 34.9 32.2 38.5 28.7 34.4 2.95 3.20 1.82 8.12 4.45
41 34.0 31.3 37.6 27.9 33.6 3.20 3.50 1.99 8.53 4.79
42 33.1 30.4 36.7 27.1 32.7 3.50 3.87 2.18 9.07 5.19
43 32.2 29.5 35.7 26.4 31.9 3.85 4.31 2.42 9.79 5.65
44 31.3 28.6 34.8 25.6 31.1 4.25 4.81 2.68 10.66 6.17
45 30.5 27.8 33.9 24.9 30.3 4.70 5.39 2.97 11.63 6.74
46 29.6 26.9 33.0 24.2 29.5 5.17 6.00 3.27 12.62 7.32
47 28.8 26.1 32.1 23.5 28.7 5.64 6.61 3.57 13.56 7.88
48 27.9 25.3 31.2 22.8 27.9 6.08 7.19 3.85 14.42 8.39
49 27.1 24.4 30.3 22.1 27.1 6.53 7.77 4.12 15.23 8.87

50 26.3 23.6 29.5 21.5 26.4 6.99 8.38 4.41 16.03 9.35
51 25.5 22.8 28.6 20.8 25.6 7.51 9.09 4.74 16.94 9.90
52 24.6 22.0 27.7 20.2 24.9 8.16 9.97 5.14 18.05 10.57
53 23.8 21.2 26.9 19.5 24.1 8.97 11.07 5.64 19.47 11.42
54 23.1 20.5 26.0 18.9 23.4 9.90 12.36 6.22 21.13 12.40
55 22.3 19.7 25.2 18.3 22.7 10.92 13.76 6.86 22.93 13.46
56 21.5 19.0 24.4 17.7 22.0 11.97 15.22 7.52 24.75 14.53
57 20.8 18.3 23.5 17.2 21.3 13.06 16.76 8.19 26.51 15.58
58 20.0 17.6 22.7 16.6 20.6 14.18 18.36 8.84 28.12 16.58
59 19.3 16.9 21.9 16.1 20.0 15.32 20.04 9.49 29.64 17.54

60 18.6 16.2 21.1 15.6 19.3 16.56 21.82 10.21 31.25 18.64
61 17.9 15.6 20.3 15.0 18.7 17.89 23.73 11.02 32.98 19.85
62 17.2 15.0 19.6 14.5 18.0 19.27 25.75 11.88 34.66 20.93
63 16.6 14.3 18.8 14.0 17.4 20.68 27.88 12.81 36.24 21.82
64 15.9 13.7 18.0 13.5 16.8 22.17 30.15 13.82 37.81 22.63
65 15.3 13.2 17.3 13.1 16.2 23.73 32.56 14.94 39.20 23.18
70 12.2 10.4 13.7 10.7 13.2 35.38 47.85 23.63 57.22 40.74
75 9.5 8.1 10.4 9.2 11.3 55.13 72.33 41.66 78.02 55.91
80 7.3 6.3 7.9 7.9 9.4 82.71 107.02 68.61 93.95 65.28
85 and over 5.4 4.7 5.7 6.3 7.3 1,000.00 1,000.00 1,000.00 1,000.00 1,000.00
------------------- ------------------------------------------ ---------------------------------------
Source: u.s. National Center for Health Statistics, Vital Statistics of the United States, annual.
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Occupational Health

Table 5.4 is obtained from the 1975 Statistical Abstract
of the United States published by the Census Bureau with
the primary data obtained from the National Center for
Health Statistics [4]. The right-hand side of the table pro­
vides age-race-sex-specific l-year mortality rates for the
United States in 1973. Please note that the entries on the
right side of the table are the number of deaths per 1000
individuals; they are not percentages. Suppose we are
investigating workers in a nuclear-power plant and wish
to ascertain whether the mortality of workers in this plant
is higher or lower than expected. On January 1, 1973, we
have the following age distribution in the plant as given
in Table 5.5:

5.70 Suppose we follow this group of men over a 5-year
period from January 1, 1973, to December 31, 1977, and
find that 20 of the men have died over this period. Is this
an unusual number of deaths? Justify your answer. Please
assume that the mortality rate of a 45-year-old, for exam­
ple, remains constant over the 5-year period. Hint: Con­
sider using an approximation to solve this problem.
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