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Iintroduction

In Chapters 3 through 5, the properties of different probability models were explored.
In doing this, we always assumed that the specific probability distributions were known.

Infectious Disease We assumed that the number of neutrophils in a sample of 100 white blood
cells was binomially distributed with parameter p = .6. (] ]

Bacteriology We assumed that the number of bacterial colonies on a 100-cm? agar plate was
Poisson distributed with parameter u = 2. (1 1]

Hypertension We assumed that the distribution of diastolic blood-pressure measurements in
35-44-year-old men was normal with mean g = 80 mm Hg and ¢ = 12 mm Hg. (] ]

In general, we have been assuming that the properties of the underlying distri-
butions from which our data are drawn are known and that the only question that
remains is what can be predicted about the behavior of the data given a knowledge
of these properties.

Hypertension Using the data in Example 6.3, we could predict about 95% of all diastolic
blood pressures from 35-44-year-old men should fall between 56 mm Hg and 104 mm Hg.
LT

The problem addressed in the remainder of this text, and the more basic statistical
problem, is that we have a data set and we want to infer the properties of the underlying
distribution from this data set. This inference usually involves inductive rather than
deductive reasoning; that is, in principle, a variety of different probability models
must at least be explored to see which model best “fits” the data.

Statistical inference can be further subdivided into the two main areas of estimation
and hypothesis testing. Estimation is concerned with estimating the values of specific
population parameters; hypothesis testing is concerned with testing whether the value
of a population parameter is equal to some specific value. Problems of estimation are
covered in this chapter, while problems of hypothesis testing are discussed in Chapters
7 through 10.

Some typical problems that involve estimation follow.

Hypertension Supposc we mcasure the systolic blood pressures of a group of Samoan villagers
and we believe the underlying distribution is normal. How can the parameters of this distribution
(i, ) be estimated if no previous data are available on these people? L]

Puimonary Disease Suppose we look at people living within a low-income census tract in an
urban area and we wish to estimate the prevalence of tuberculosis (TB) in the community. We
assume that the number of cases among n people sampled will be binomially distributed with
some parameter p. How is the parameter p estimated? (1]
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In Examples 6.5 and 6.6, we were interested in obtaining specific numbers as

estimates of our parameters. These numbers are often referred to as point estimates.
Sometimes we want to specify a range within which the parameter values are likely
to fall. If this range is narrow, then we may feel that our point estimate is a good one.
This type of problem involves interval estimation.

Ophthalmology A study is proposed to screen a group of 1000 people ages 65 or older to
identify those with visual impairment, that is, a visual acuity of 20-50 or worse in both eyes,
even with the aid of glasses. Suppose we assume that the number of such people ascertained
in this manner is binomially distributed with parameters n = 1000 and unknown p. We would
like to obtain a point estimatc of p and to provide an interval about this point estimate to see
how accurate our point estimate is. For example, we would feel better about a point estimate
of 5% if this interval were .04—.06 than if it were .01-.10. EEN

The Relationship Between Population and Sample

Obstetrics Suppose we wish to characterize the distribution of birthweights of all liveborn
infants that were born in the United States in 1988. Assume that the underlying distribution of
birthweight has an expected value (or mean) u and variance o?. Ideally, we wish to estimate
w and o2 exactly, bascd on the entire population of U.S. liveborn infants in 1988. But this task
is impossible with such a large group. Instead, we decide to select a random sample of » infants
that are representative of this large group and usc the birthweights x;, . . . , x, from this sample
to help us estimate wu and o?. What is a random sample? amm

EEESENAESEENEEINEEE NSNS NE NN NN NN NN ENEENAERENENE
A random sample is a selection of some members of the population such that each member
is independently chosen and has a known non-zero probability of being selected. ]

NSNS NN NSNS N NS EEENEEE NN NEEE
A simple random sample is a random sample in which each group member has the same
probability of being selected. ]

NEEEEN NSNS AN AN AN
The reference, target, or study, population is the group that we wish to study. The random
sample is selected from the study population. ]

For ease of discussion, the abbreviated term “random sample” will be used to denote
a simple random sample.

Although many samples in practice are random samples, this is not the only type
of sample used in practice. A popular alternative design is that of cluster sampling.

CardiovascularDisease The Minnesota Heart Study seeks to accurately assess the prevalence
and incidence of differcnt types of cardiovascular morbidity (such as heart attack and stroke)
in the state of Minnesota, as well as trends in thesc rates over time. It is impossible to survey
every individual in the state. It is also impractical to survey, in person, a random sample of
individuals in the state, since it would requirc a large number of interviewers to be dispersed
throughout the state. Instead, the state of Minnesota is divided into geographically compact
regions or clusters. A random sample of clusters is then chosen for study and several interviewers
are sent to each cluster selccted. The goal 1s first to enumerate all households in a cluster, and
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then to survey all members in these households. If some cardiovascular morbidity is identified
by interviewers, then the relevant individuals are invited to be examined in morc detail at a
centrally located health site within the cluster. The total sample of all interviewed subjects over
the entire statc is referred to as a cluster sample. Similar strategies are also used in many National
Health Surveys. Cluster samples require statistical methods that are beyond the scope of this
book. Seec Cochran [1] for more discussion of cluster samples. 1T

In this book, we will assume that all samples are random samples from a reference
population.

Epidemiology The Nurses” Health Study is a large epidemiologic study involving over 100,000
female nurses residing in 11 large states in the United States. The nurses were first contacted
by mail in 1976 and have been followed every 2 years by mail since then. Suppose we want
to select a test sample of 100 nurses to test a new procedure for obtaining serum samples by
mail. One way of selecting the sample is to assign each nurse an ID number and then select
the nurses with the lowest 100 ID numbers. This is definitely nor a random sample since each
nurse is not equally likely to be chosen. Indced, since the first two digits of the ID number
arc assigned according to state, the 100 nurses with the lowest ID numbers would all come
from the same state. An alternative method of selecting the sample is to have a computer
generate a sct of 100 random numbers (from among the numbers 1 to over 100,000), one to
be assigned to each nurse. By doing this, each member is equally likely to be included in the
sample. This would be a truly random sample. (More details on random numbers arc given in
Section 6.3.) 11

In practice, there is rarely an opportunity to enumerate each member of the
reference population so as to select a random sample, and the assumption that the
sample selected has all the properties of a random sample without formally being a
random sample must be made.

In Example 6.8 the reference population is finite and well defined and can be
enumerated. In many instances, the reference population is effectively infinite and is
not well defined.

Cancer Suppose we wish to estimate the S5-year survival ratc of women who are initially
diagnosed as having breast cancer at the ages of 45-54 and who undergo radical mastectomy
at this time. Our refercnce population is all women who have ever had a first diagnosis of breast
cancer in the past when they were 45-54 years old or who ever will have such a diagnosis in
the future when they are 45-54 years old and who receive radical mastectomies. ams

This population is effectively infinite. The population cannot be formally enum-
erated and thus a truly random sample cannot be selected from it. However, we will
again assume that the sample we have selected behaves as if it were a random sample.

In this text we will assume that all reference populations discussed are effectively
infinite, although, as in Examples 6.8 and 6.10, many of them are actually very large
but finite. Sampling theory is the special branch of statistics that treats statistical
inference for finite populations; it is beyond the scope of this text. See reference [1]
for a good treatment of this subject.

Random-Number Tables

In this section practical methods for selecting random samples are discussed.
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TABLE 6.1

20 rardom
oarticipants chosen
from 10Q0 participants
in the hypertension
freatment program

Hypertension Suppose we wish to study how effective a hypertension treatment program is
in controlling the blood pressure of its participants. We are given a roster of all 1000 participants
in the program but, due to limited resources, only 20 people can be surveyed. We would like
the 20 people chosen to be a random sample from the population of all participants in the
program. How should this random sample be selected? mEm

A table of random numbers would probably be used to select this sample.

SNEEEEENEEEEEESEEENESEEESENEEESEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
A random number (or random digit) is a random variable X that takes on the values 0, 1,
2, . . ., 9 with equal probability. Thus,

PrX=0=PrX=1)= +-=PrX=9) =15 n

ENENESENEEEENANENENENENENENENEAEEENSENENRERNEAENENERENEANENENENEN
A random-number table is a collection of digits that satisfies the following two properties:

(1) Each digit 0, 1, 2, . . . , 9 is equally likely to occur.
(2) The value of any particular digit is independent of the value of any other digit in the
table. ]

Table 4 in the Appendix lists 1000 random digits.

Suppose that a 5 appears as a digit in a random-number table. Does this mean that 5’s are more
likely to occur in the next few digits in the table?

No. Each digit either after or before the 5 is still equally likely to be any of the digits O, 1,
2,...,9. CT 1]

Computer programs generate large sequences of random digits that approximately
satisfy the conditions in Definition 6.5. Thus, the numbers in random-number tables
are sometimes referred to as pseudorandom numbers, since they are simulated to
satisfy the properties in Definition 6.5.

Hypertension How can the random digits in Table 4 be used to select 20 random participants
in the hypertension treatment program in Example 6.12?

A roster of the 1000 participants must be compiled and each participant must then be assigned
a number from 000 to 999. Perhaps an alphabetical list of the participants already exists, which
would make this task easy. Twenty groups of three digits would then be selected, starting at
any position in the raifdom-number table. For example, if we start at the first row of Table 4,
we have the numbers listed in Table 6.1.

First 3 rows of random-number table Actual random numbetrs chosen

32924 22324 18125 09077 329 242 232 418 125
L1L L L I L] LI
54632 90374 94143 49295 090 775 463 290 374
JLa— 1 I O IR W
88720 43035 97081 83373 941 434 929 588 720
1L L)L [ L1 ] L
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Therefore, our random sample would consist of the persons numbered 329, 242, . . .,
373 in the alphabetical list. In this particular case there were no repeats in the 20 three-digit
numbers selected. If there had been repeats, then more three-digit numbers would have
been selected until 20 different numbers were selected. This process is referred to as random
selection. (11

Diabetes Suppose we wish to conduct a clinical trial of an oral hypoglycemic agent for diabetes
and compare the oral hypoglycemic agent with standard insulin therapy. A small study of this
type will be conducted on 10 patients: 5 patients will be randomly assigned to the oral agent
and 5 to insulin therapy. How can the table of random numbers be used to make the assignments?

The prospective patients are numbered from 0 to 9 and five unique random digits are selected
from some arbitrary position in the random-number table (e.g, from the 28th row).

The first five unique digits are 6, 9, 4, 3, 7. Thus, the patients numbered 3, 4, 6, 7, 9 will be
assigned to the oral hypoglycemic agent and the remaining patients (numbered 0, 1, 2, 5, 8)
to standard insulin therapy. In some studies the prospective patients are not known in advance
and are recruited over time. In this case, if 00 is identified with the first patient recruited, 01
with the second patient recruited, . . . , and 09 with the tenth patient recruited, then the oral
hypoglycemic agent would be assigned to the fourth (3 + 1), fifth (4 + 1), seventh (6 + 1),
eighth (7 + 1), and tenth (9 + 1) patients recruited and the standard therapy to the first
(0 + 1), second (1 + 1), third (2 + 1), sixth (5 + 1), and ninth (8 + 1). aEEm

This process is referred to as random assignment. It is different from random selection
(Example 6.14) in that, typically, the number, in this case, of patients to be assigned
to each type of treatment (5), is fixed in advance. The random-number table helps
select the 5 patients who are to receive one of the two treatments (oral hypoglycemic
agent). By default, the patients not selected for the oral agent are assigned to the
alternative treatment (standard insulin therapy). No additional random numbers need
to be chosen for the second group of 5 patients. If random selection were used instead,
then one approach might be to draw a random digit for each patient. If the random
digit is from O to 4, then the patient is assigned to the oral agent; if from 5 to 9, then
the patient is assigned to insulin therapy. One problem with this approach is that in a
finite sample, equal numbers of patients will not necessarily be assigned to each therapy,
which is usually the most efficient design. Indeed, referring to the first 10 digits in
the 28th row of the random-number table (69644 37198), we see that 4 patients
would be assigned to oral therapy (patients 4, 5, 6, and 8) and 6 patients would be
assigned to insulin therapy (patients 1, 2, 3, 7, 9, 10) if the method of random selection
were used. Random assignment is preferable in this instance, since it ensures an equal
number of patients assigned to each treatment group.

Obstetrics The birthweights from 1000 consecutive deliveries at Boston City Hospital (serving
a low-income population) are enumerated in Table 6.2. For the purpose of this example, consider
this population as effectively infinite. Suppose we wish to draw 5 random samples of size 10
from this population using the random numbers in Table 4. How can these samples be selected?

Start anywhere in the table. Say we arbitrarily choose to start in the 17th row and read groups
of three digits from left to right. The random numbers will thus range from 000 to 999. Suppose
the three-digit random number selected is y. The appropriate row in Table 6.2 is then found by
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TABLE 6.2 Somple of pirthweights (0z) cofaned from 1000 consecutive deliveries at Boston City Hosoifai

ID
Numbers 0 1 2 3 4 5 6 7 8 9 10 11 12 13 414 15 16 17 18 19
000-019 116 124 119 100 127 103 140 82 107 132 100 92 76 129 138 128 115 133 70 121
020-039 114 114 121 107 120 123 83 96 116 110 71 8 136 118 120 110 107 157 89 71
040-059 98 105 106 52 123 101 i1 130 129 94 124 127 128 112 83 95 118 115 86 120
060-079 106 115 100 107 131 114 121 110 115 93 116 76 138 126 143 93 121 135 81 135
080-099 108 152 127 118 110 115 109 133 116 129 118 126 137 110 32 139 132 110 140 119
100-119 109 108 103 88 87 144 105 138 115 104 129 108 92 100 145 93 115 85 124 123
120-139 141 96 146 115 124 113 98 110 153 165 140 132 79 101 127 137 129 144 126 155
140-159 120 128 119 108 113 93 144 124 89 126 87 120 99 60 115 86 143 97 106 148
160-179 113 135 117 129 120 117 92 118 80 132 121 119 57 126 126 77 135 130 102 107
180199 115 135 112 121 89 135 127 115 133 64 91 126 78 85 106 94 122 111 109 89
200-219 99 118 104 102 94 113 124 118 104 124 133 80 117 112 112 112 102 118 107 104
220-239 90 113 132 122 89 111 118 108 148 103 112 128 86 111 140 126 143 120 124 110
240-259 142 92 132 128 97 132 99 131 120 106 115 101 130 120 130 89 107 152 90 116
260-279 106 111 120 198 123 152 135 83 107 S5 131 108 100 104 112 121 102 114 102 101
280-299 118 114 112 133 139 113 77 109 142 144 114 117 97 96 93 120 149 107 107 117
300-319 93 103 121 118 110 89 127 100 156 106 122 105 92 128 124 125 118 113 110 149
320-339 98 98 141 131 92 141 110 134 90 88 111 137 67 95 102 75 108 118 99 79
340-359 110 124 122 104 133 98 108 125 106 128 132 95 114 67 134 136 138 122 103 113
360-379 142 121 125 111 97 127 117 122 120 80 114 126 103 98 108 100 106 98 116 109
380-399 98 97 129 114 102 128 107 119 84 117 119 128 121 113 128 111 112 120 122 91l
400-419 117 100 108 101 144 104 110 146 117 107 126 120 104 129 147 111 106 138 97 90
420-439 120 117 94 116 119 108 109 106 134 121 125 105 177 109 109 109 79 118 92 103
440-459 110 95 111 144 130 83 93 81 116 115 131 135 116 97 108 103 134 140 72 112
460-479 101 111 129 128 108 90 113 99 103 41 129 104 144 124 70 106 118 99 85 93
480-499 100 105 104 113 106 88 102 125 132 123 160 100 128 131 49 102 110 106 96 116
500-519 128 102 124 110 129 102 101 119 101 119 141 112 100 105 155 124 67 94 134 123
520-539 92 56 17 135 141 105 133 118 117 112 87 92 104 104 132 121 118 126 114 90
540-559 109 78 117 165 127 122 108 109 119 98 120 101 96 76 143 83 100 128 124 137
560-579 90 129 89 125 131 118 72 121 91 113 91 137 110 137 111 135 105 88 112 104
580-59% 102 122 144 114 120 136 144 98 108 130 119 97 142 115 129 125 109 103 114 106
600-619 109 119 89 98 104 115 99 138 122 91 161 96 138 140 32 132 108 92 118 58
620-639 158 127 121 75 112 121 140 80 125 73 115 120 85 104 95 106 100 87 99 113
640-659 95 146 126 58 64 137 69 90 104 124 120 62 83 96 126 155 133 115 97 105
660-679 117 78 105 99 123 86 126 121 109 97 131 133 121 125 120 97 101 92 111 119
680-699 117 80 145 128 140 97 126 109 113 125 157 97 119 103 102 128 116 96 109 112
700-719 67 121 116 126 106 116 77 119 119 122 109 117 127 114 102 75 88 117 99 136
720-739 127 136 103 97 130 129 128 119 22 109 145 129 96 128 122 115 102 127 109 120
740-759 111 114 115 112 146 100 106 137 48 110 97 103 104 107 123 87 140 89 112 123
760-779 130 123 125 124 135 119 78 125 103 55 69 83 106 130 98 81 92 110 112 104
780-799 118 107 117 123 138 130 100 78 146 137 114 61 132 109 133 132 120 116 133 133
800-819 8 116 101 124 126 94 93 132 126 107 98 102 135 59 137 120 119 106 125 122
820-839 101 119 97 86 105 140 89 139 74 131 118 91 98 121 102 115 115 135 100 90
840-859 110 113 136 140 129 117 117 129 143 88 105 110 123 87 97 99 128 128 110 132
860-879 78 128 126 93 148 121 95 121 127 80 109 105 136 141 103 95 140 115 118 117
880-899 114 109 144 119 127 116 103 144 117 131 74 109 117 100 103 123 93 107 113 144
900-919 99 170 97 135 115 89 120 106 141 137 107 132 132 58 113 102 120 98 104 108
920-939 85 115 108 89 88 126 122 107 68 121 113 116 94 85 93 132 146 98 132 104
940-959 102 116 108 107 121 132 105 114 107 121 101 110 137 122 102 125 104 124 121 111
960-979 101 93 93 88 72 142 118 157 121 58 92 114 104 119 91 52 110 116 100 147
980-999 114 99 123 97 79 81 146 92 126 122 72 153 97 89 100 104 124 83 81 129
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finding the group of ID numbers within which y falls and the appropriate column by subtracting
the lower end of the group from y. For example, refer to the 17th and 18th rows of the random-
number table, which are reproduced in Table 6.3.

41874 17566 61200 15994
L _ I .
25758 04625 43226 32986
1L [ [ [
Ist 3-digit no. = 418 Row = 400-419, Column = 418 — 400 = 18
Birthweight = 97 oz
2nd 3-digit no. = 711 Row = 700-719, Column = 711 — 700 = 11
Birthweight = 117 oz
3rd 3-digit no. = 756 Row = 740-759, Column = 756 — 740 = 16

Birthweight = 140 oz

The random-number selection process continues until 5 sets of 10 numbers are obtained,

as shown in Table 6.4.

Sample
Individual 1 2 3 4 5
1 97 177 97 101 137
2 117 198 125 114 118
3 140 107 62 79 78
4 78 99 120 120 129
5 99 104 132 115 87
6 148 121 135 117 110
7 108 148 118 106 106
8 135 133 137 86 116
9 126 126 126 110 140
10 121 115 118 119 98
X 116.90 132.80 117.00 106.70 111.90
s 21.70 32.62 22.44 14.13 20.46

SECTION 6.4 Randomized Clinical Trials

An important advance in clinical research design is the use of randomization and the
randomized clinical trial (RCT).
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A randomized clinical trial (RCT) is a type of research design for comparing different treat-
ments, in which the assignment of treatments to patients is by some random mechanism. The
process of assignment of treatments to patients is called randomization. Randomization means
that the types of patients assigned to different treatment modalities will be similar if the sample
sizes arc large. However, if the sample sizes are small, then patient characteristics of treatment
groups may not be comparable. Thus, it is customary to present a table of characteristics
of different treatment groups in RCTs, to check that the randomization process is working
well. [ |

Hypertension The SHEP (Systolic Hypertension in the Elderly Program) trial is a study
designed to assess the ability of antihypertensive drug treatment to reduce the risk of stroke
among people 60 years of age or older with isolated systolic hypertension. Isolated systolic
hypertension is defined as elevated systolic blood pressure level (= 160 mm Hg), but normal
diastolic blood pressure level (< 90 mm Hg) [2]. Of the 4736 people studied, 2365 were
randomly assigned to active drug treatment and 2371 were randomly assigned to placebo. The
bascline characteristics of the participants werc compared by treatment group to check that the
randomization achicved its goal of providing comparable groups of patients in the two treatment
groups (see Table 6.5). We scc that the patient characteristics are generally very comparable
between the two treatment groups. nEm

The importance of randomization in modern clinical research cannot be over-
estimated. Prior to randomization, comparison of different treatments were often based
on selected samples, which are often not comparable.

Infectious Disease Aminoglycosides are a type of antibiotic that are effective against certain
types of gram-negative organisms. They are often given to critically ill patients (such as cancer
patients, to prevent secondary infections that are caused by the treatment received). However,
there are also side effects of aminoglycosides including nephrotoxicity (damage to the kidney)
and ototoxicity (temporary hearing loss). For several decades, there have been studies comparing
the efficacy and safety of different aminoglycosides. Many studies have compared the most
common aminoglycoside, gentamicin, with other antibiotics in this class (such as tobramycin).
The earliest studies were nonrandomized studies. Typically, physicians would compare outcomes
for all patients treated with gentamicin in an infectious disease service over a defined period of
time with outcomes for all patients treated with another aminoglycoside. No random mechanism
was used to assign treatments to patients. The problem is that patients prescribed tobramycin
might be sicker than patients prescribed gentamicin, especially if tobramycin is perceived as a
more effective antibiotic and is “the drug of choice” for the sickest patient. Ironically, in a
nonrandomized study, the more effective antibiotic might actually perform worse, since this
antibiotic is prescribed more often for the sickest patients. Recent clinical studies are virtually
all randomized studies. Patients assigned to different antibiotics will tend to be similar in
randomized studies, and comparison of different types of antibiotics can be performed based
on comparable patient populations. (][]

Design Features of Randomized Clinical Trials

The actual method of randomization differs widely in different studies. Either random
selection, random assignment, or some other random process may be used as the
method of randomization. In clinical trials, random assignment is sometimes referred
to as block randomization.
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TABLE 6.5 Bcseline characteristics of randormized SHEP participants by treatment group:

Active
Characteristic treatment group Placebo group Total
No randomized 2365 2371 4736
Age,y
Average® 71.6 (6.7) 71.5 (6.7) 71.6 (6.7)
%
60-69 41.1 41.8 41.5
70-79 44.9 44.7 44 .8
=80 14.0 13.4 13.7
Race-sex, %¢
Black men 4.9 4.3 4.6
Black women 8.9 9.7 9.3
White men 38.8 38.4 38.6
White women 47.4 47.7 47.5
Education, yb 11.7 (3.5) 11.7 (3.4) 11.7 (3.5)
Blood pressure, mm Hgr
Systolic 170.5 (9.5) 170.1 (9.2) 170.3 (9.4)
Diastolic 76.7 (9.6) 76.4 (9.8) 76.6 (9.7)
Antihypertensive medication at initial contact, % 33.0 33.5 33.3
Smoking, %
Current smokers 12.6 12.9 12.7
Past smokers 36.6 37.6 37.1
Never smokers 50.8 49.6 50.2
Alcohol use, %
Never 21.5 21.7 21.6
Formerly 9.6 10.4 10.0
Occasionally 55.2 53.9 54.5
Daily or nearly daily 13.7 14.0 13.8
History of myocardial infarction, % 4.9 4.9 4.9
History of stroke, % 1.5 1.3 1.4
History of diabetes, % 10.0 10.2 10.1
Carotid bruits, % 6.4 7.9 7.1
Puise rate, beats/mint 2 70.3 (10.5) 71.3 (10.5) 70.8 (10.5)
Body-mass index, kg/m2 27.5 (4.9) 27.5(5.1) 27.5 (5.0)
Serum cholesterol, mmol/L®
Total 6.1(1.2) 6.1 (1.1) 6.1 (1.1)
High-density lipoprotein 1.4 (0.4) 1.4 (0.4) 1.4 (0.4)
Depressive symptoms, %® 11.1 11.0 111
Evidence of cognitive impairment, %' 0.3 0.5 0.4
No limitation of activities of daily living, %¢ 95.4 93.8 94.6
Baseline electrocardiographic abnormalities, %9 61.3 60.7 61.0

2SHEP indicates the Systolic Hypertension in the Elderly Program.

YValues are mean (SD).

“Included among the whites were 204 Orientals (5% of whites), 84 Hispanics (2% of whites), and 41 classified as “other” (1% of whites).
dp < .05 for the active-treatment group compared with the placebo group.

“Depressive symptom-scale score of 7 or greater.

{Cognitive-impairment-scale score of 4 or greater.

80ne or more of the following Minnesota codes: 1.1 to 1.3 (Q/QS), 3.1 to 3.4 (high R waves), 4.1 to 4.4 (ST depression), 5.1 to 5.4
(T wave changes), 6.1 to 6.8 (AV conduction defects), 7.1 to 7.8 (ventricular conduction defects), 8.1 to 8.6 (arrhythmias), and 9.1 to
9.3 and 9.5 (miscellaneous items).
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ENNSEASEEEAN AN EAEAENGSEAFEEEEEENEEEEEEENENAEREENENEENENENEEENENEER
Block randomization is defined as follows in clinical trials comparing two treatments (referred
to as treatment A and treatment B). A block size of 2n is determined in advance, where for
every 2n patients entering the study, n patients are randomly assigned to treatment A and the
remaining r patients are assigned to treatment B. A similar approach can be used in clinical
trials with more than 2 treatment groups. For example, if there are k treatment groups, then the
block size might be kn, where for every kn patients, n patients are randomly assigned to the
first treatment, » patients are randomly assigned to the second treatment, and so on—n patients
are randomly assigned to the kth treatment. ]

Thus, if there are 2 treatment groups, then under block randomization, for every
2n patients there will be an equal number assigned to each treatment. The advantage
is that treatment groups will be of equal size in both the short and the long run. Since
the eligibility criteria or other procedures in a clinical trial sometimes change as a
study progresses, this ensures comparability of treatment groups over short periods of
time as the study procedures evolve. One disadvantage of blocking is that it may
become evident what the randomization scheme is after a while, and physicians may
defer entering patients into the study until the treatment they perceive as better is more
likely to be selected. To avert this problem, a variable block size is sometimes used.
For example, the block size might be 8 for the first block, 6 for the second block, 10
for the third block, and so on.

Another technique that is sometimes used in the randomization process is
stratification.

ESNESEEENEEN NN NN AN NSNS A AN NN NN N AN AN NN NN AN
In some clinical studies, patients are subdivided into subgroups, or strata, according to char-
acteristics that are thought to be important for patient outcome. Separate randomization lists
are maintained for each stratum to ensure that there are comparable patient populations within
each stratum. This procedure is called stratification. Either random selection (ordinary ran-
domization) or random assignment (block randomization) might be used for each stratum. Typical
characteristics used to define strata are age, sex, or overall clinical condition of the patient. m

Another important advance in modern clinical research is the use of blinding.

NEENPEREESAEAS NSNS NSNS AN AN RSN NN NN NEEENEENE
A clinical trial is referred to as double blind if neither the physician nor the patient knows what
treatment he or she is getting. A clinical trial is referred to as single blind if the patient is
blinded as to treatment assignment but the physician is not. A clinical trial is unblinded if both
the physician and patient are aware of the treatment assignment. [

Currently, the gold standard of clinical research is the randomized double-blind
study, in which patients are assigned to treatments at random and neither the patient
nor the physician is aware of the treatment assignment.

Hypertension The SHEP study referred to in Example 6.17 was a double-blind study. Neither
the patient nor the physician knew whether the antihypertensive medication was an active drug
or a placebo. Blinding is always preferable to prevent biased reporting of outcome by the patient
and/or the physician. However, it is not always feasible in all research settings. (T T

Cerebrovascular Disease Atrial fibrillation (AF) is a common symptom in the elderly,
characterized by a specific type of abnormal heart rhythm. For example, former president Bush
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had this condition while in office. It is well known that the risk of stroke is much higher among
people with AF than for other people of comparable age and sex, particularly among the elderly.
Warfarin is a drug considered effective in preventing stroke among people with AF. However,
warfarin can cause bleeding complications and it is important to determine the optimal dose for
a patient so as to maximize the benefit of stroke prevention while minimizing the risk of bleeding.
Unfortunately, to monitor the dose requires periodic assessments of the prothrombin time (a
measure of the clot-forming capacity of blood), with blood tests every few weeks, when the
dose may be increased, decreased, or kept the same, depending on the prothrombin time. Since
it is felt to be impractical to subject control patients to regular sham blood tests, the dilemma
arises of selecting a good control treatment to compare with warfarin, in a clinical trial setting.
In most clinical trials involving warfarin, patients are assigned at random to either warfarin or
control treatment, where control is simply nontreatment. However, it is important in this setting
that people making the sometimes subjective determination of whether or not a stroke has
occurred be blinded as to treatment assignment of individual patients. (T

Another issue with blinding is that patients may be initially blinded as to treatment
assignment, but the nature of side effects may strongly indicate the actual treatment
received.

Cardiovascular Disease In the Physicians Health Study, a randomized study was performed
comparing aspirin with aspirin placebo in the prevention of cardiovascular disease. One side
effect of regular intake of aspirin is gastrointestinal bleeding. The presence of this side effect
strongly indicates that the type of treatment received was aspirin. (] 1]

Estimation of the Mean of a Distribution

Now that we understand the meaning of a random sample from a population and have
explored some practical methods for selecting such samples using a random number
table, we will move on to estimation. The question remains, How is a specific random
sample x,, . . . , x,, used to estimate w and o, the mean and variance of the underlying
distribution? Estimating the mean is the focus of this section, and estimating the
variance is covered in Section 6.6.

Point Estimation

A natural estimator to use for estimating the population mean u is the sample mean

n
e &

i=1 R
What are the properties of X that make it a desirable estimator of u? Forget about our
particular sample for the moment and consider the set of all possible samples of size
n that could have been selected from the population. The values of x in each of these
samples will, in general, be different. These values will be denoted by X, x,, and so
forth. The key conceptual point in this instance is to forget about our sample as a
unique entity and to consider it instead as representative of all possible samples of
size n that could have been drawn from the population. Stated another way, X is
regarded as a single realization of a random variable over all possible samples of size

n that could have been selected from the population.
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DEFINITION 6.10

FIGURE 6.1

Samping distrioution of
x over 200 samples of
size 10 selected from
the population of 1000
birthweights given in
Table 62 (100 = 1000—
1009, efc)

The sampling distribution of ¥ is the distribution of values of ¥ over all possible samples of
size n that could have been selected from the reference population. ]

In Figure 6.1, an example of such a sampling distribution is provided. This example
consists of a frgeuency distribution of the sample mean from 200 randomly selected
samples of size 10 drawn from the distribution of 1000 birthweights given in Table
6.2, as generated by the Statistical Analysis System (SAS) procedure PROC CHART.
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We can show that the average of these sample means (x’s) when taken over a
large number of random samples of size n will approximate u as the number of samples
selected becomes large. In other words, the expected value of X over its sampling
distribution is equal to u. This result is summarized as follows:

Let x;, . . ., x, be a random sample drawn from some population with mean u. Then for
the sample mean ¥, E(X) = L.

Note that (6.1) holds for any population regardless of its underlying distribution.
In other words, X is an unbiased estimator of .
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EEEENNESEEENEESNEENEEENNEEESNNEEENNEE NN NSNS AN SN NN NN EEE
An estimator e of a parameter w is unbiased if E(e) = u. This means that the average value
of e over a large number of repeated samples of size n will be w. ]

The unbiasedness of x is not a sufficient reason to use it as an estimator of u.
Many unbiased estimators of p exist, including the sample median and the average
value of the largest and smallest data points in a sample. Why is X chosen rather than
any of the other unbiased estimators? The reason is that if the underlying distribution
of the population is normal, then it can be shown that the unbiased estimator with the
smallest variance is given by x. Thus, X is referred to as the minimum variance
unbiased estimator of u.

This concept is illustrated in Figure 6.2(a) through (c), where for 200 random
samples of size 10 drawn from the population of 1000 birthweights in Table 6.2, the
sampling distribution of the sample mean (x) is plotted in Figure 6.2(a), the sample
median in Figure 6.2(b), and the average of the smallest and largest observations in
the sample in Figure 6.2(c). Note that the variability of the distribution of sample
means is slightly smaller than that of the sample median and considerably smaller than
that of the average of the smallest and largest observations.

Standard Error of the Mean

From (6.1) we see that X will be an unbiased estimator of u for any sample size n.

Why then is it preferable to estimate parameters from large samples rather than from
small ones? The intuitive reason is that the larger the sample size, the more accurate
an estimator X will be.

Obstetrics Consider Table 6.4 (p. 147). Notice that the 50 individual birthweights range from
62 to 198 oz and have a sample standard deviation of 23.79 oz. The 5 sample means range
from 106.7 to 132.8 oz and have a sample standard deviation of 9.77 oz. Thus, the sample
means based on 10 observations are less variable from sample to sample than are the individual
observations, which can be considered as sample means from samples of size 1. (1] ]

Indeed, we would expect that the sample means from repeated samples of size
100 would be less variable than those from samples of size 10. We can show that this
is true. Using the properties of linear combinations of random variables given in (5.6),

Var(x) = Var(E %xi>
i=1
501
= Z — Var(x;)
i=1 R
Thus, Var®) = <%> Y Var(x,)
i=1

However, by definition Var(x;) = o?. Therefore,

Var(x) = (1/n*)(0* + 6? + - - - + 02) = (1/nD(na?) = o?/n
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The standard deviation (sd) = V variance ; thus, sd(X) = o/ Vi . We have the following
summary:

62]

Letx;, ..., x, be a random sample from a population with underlying mean w and variance
o?. The set of sample means in repeated random samples of size n from this population has
variance o2/n. The standard deviation of this set of sample means is thus o/Vn and is
referred to as the standard error of the mean (sem) or the standard error.

DEFINITION 6.12

EXAMPLE 623

SOLUTION

In practice, the population variance o is rarely known. We will see later in

Section 6.6 that a reasonable estimator for the population variance o is the sample
variance s, which leads to the following definition:

EEESESESEEENSENEEEEEEN NN NN NN NN NN NN NS NN NN R RN
The standard error of the mean (sem), or the standard error, is given by o/ Vn and is
estimated by s/Vn . It represents the estimated standard deviation obtained from a set of sample
means from repeated samples of size n from a population with underlying variance o2. [

Note that the standard error is not the standard deviation of an individual obser-
vation x; but rather of the sample mean X. The standard error of the mean is illustrated
in Figure 6.3(a) through (c). In Figure 6.3(a), the frequency of distribution of the
sample mean is plotted for 200 samples of size 1 drawn from the collection of birth-
weights in Table 6.2. Similar frequency distributions are plotted for 200 sample means
from samples of size 10 in Figure 6.3(b) and from samples of size 30 in Figure 6.3(c).
Notice that the spread of the frequency distribution in Figure 6.3(a), corresponding to

= 1, is much larger than the spread of the frequency distribution in Figure 6.3(b),
corresponding to n = 10. Furthermore, the spread of the frequency distribution in
Figure 6.3(b), corresponding to n = 10, is much larger than the spread of the frequency
distribution in Figure 6.3(c), corresponding to n = 30.

Obstetrics Compute the standard error of the mean for the third sample of birthweights in
Table 6.4 (p. 147).

The standard error of the mean is given by

s/Vn = 22.44/V10 = 7.09 1T

The standard error is a quantitative measure of the variability of sample means
obtained from repeated random samples of size n drawn from the same population.
Notice that the standard error is directly proportional to both 1/ Vn and to the pop-
ulation standard deviation of an individual observation ¢. It justifies the concern with
sample size in assessing the accuracy of our estimate X of the unknown population
mean u. The reason it is preferable to estimate u from a sample of size 400 rather
than from one of size 100 is that the standard error from the first sample will be % as
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FIGURE 6.3(a)(b)(c)
lustration of the
standard error of the
mean (100 = 1000
1019, efc)

EXAMPLE 624
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large as in the second sample. Thus, the larger sample should provide a more accurate
estimate of u. Notice that the accuracy of our estimate is also affected by the underlying
variance o2 of individual observations from the population, a quantity which is unre-
lated to the sample size n. However, o can sometimes be affected by experimental
technique. For example, in measuring blood pressure, o can be reduced by better
standardization of blood-pressure observers and/or by using additional replicates for
individual subjects (for example, using an average of two blood-pressure readings
rather than a single reading).

Gynecology Suppose a woman wishes to estimate her exact day of ovulation for contraceptive
purposes. A theory exists that at the time of ovulation the body temperature rises by an amount
from 0.5°F to 1.0°F. Thus, changes in body temperature can be used to guess the day of ovulation.
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To use this method, a good estimate of basal body temperature during a period when ovulation
is definitely not occurring is needed. Suppose that for this purpose a woman measures her body
temperature on awakening on the first 10 days after menstruation and obtains the following data:
97.2°, 96.8°, 97.4°, 97.4°, 97.3°, 97.0°, 97.1°, 97.3°, 97.2°, 97.3°. What is the best estimate
of her underlying basal body temperature (u)? How accurate is this estimate?

The best estimate of her underlying body temperature during the nonovulation period (w) is
given by

X=01972+9.8+ - -+ 97.3)/10 = 97.20°
The standard error of this estimate is given by
s/V10 = 0.189/V10 = 0.06°

In our work on confidence intervals in Section 6.5.6 we will show that for many underlying
distributions, we can be fairly certain that the true mean u is approximately within two standard
errors of X. In this case, true mean basal body temperature (u) is within 97.20° = 2(0.06)° =
(97.1°-97.3°). Thus, if the temperature is elevated by at least 0.5° above this range on a given
day, then it might indicate that the woman was ovulating, and for contraceptive purposes,
intercourse should not be attempted on that day. umm

Central-Limit Theorem

If the underlying distribution is normal, then it can be shown that the sample mean
will itself be normally distributed with mean u and variance o?/n (see Section 5.6).
In other words, X ~ N(u, o%/n). If the underlying distribution is not normal, we would
still like to make some statement about the sampling distribution of the sample mean.
This statement is given by the following theorem:
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6.3

Central-Limit Theorem

Let x;, . . ., x, be a random sample from some population with mean w and variance o?.
Then for large n, X ~ N(u, 0%/n) even if the underlying distribution of individual observations
in the population is not normal. (The symbol ~ is used to represent “approximately
distributed.”)

EXAMPLE 625

EXAMPLE 626

EXAMPLE 627

SOLUTION

This theorem is very important because many of the distributions encountered in
practice are not normal. In such cases the central-limit theorem can often be applied;
this will allow us to perform statistical inference based on the approximate normal-
ity of the sample mean, despite the nonnormality of the distribution of individual
observations.

Obstetrics The central-limit theorem is illustrated by plotting, in Figure 6.4(a), the sampling
distribution of mean birthweights obtained by drawing 200 random samples of size 1 from the
collection of birthweights in Table 6.2. Similar sampling distributions of sample means are
plotted from samples of size 5, in Figure 6.4(b), and samples of size 10, in Figure 6.4(c).
Notice that the distribution of individual birthweights (i.e., sample means from samples of
size 1) is slightly skewed to the left. However, the distribution of sample means becomes
increasingly closer to bell-shaped as the sample size increases to 5, in Figure 6.4(b), and 10,
in Figure 6.4(c). (1]

Cardlovascular Disease Scrum triglycerides are an important risk factor for certain types
of coronary disease. Their distribution tends to be positively skewed or skewed to the right,
with a few people with very high values, as is shown in Figure 6.5. However, hypothesis tests
can be performed based on mean serum triglycerides over moderate samples of people, since
from the central-limit theorem the distribution of means will be approximately normal, even if
the underlying distribution of individual measurements is not. To further ensure normality, the
data can also be transformed onto a different scale. For example, if a log transformation is used,
then the skewness of the distribution will be reduced and the central-limit theorem will be
applicable for smaller sample sizes than if the data are kept in the original scale. We discuss
data transformations in more detail in Chapter 11. (T1]

Obstetrics Compute the probability that the mean birthweight from a sample of 10 infants
drawn from the Boston City Hospital population in Table 6.2 will fall between 98.0 and 126.0
oz (i.e., 98 < X < 126) if the mean birthweight for the 1000 birthweights from the Boston City
Hospital population is 112.0 oz with a standard deviation of 20.6 oz.

The central-limit theorem is applied and it is assumed that X follows a normal distribution with
mean p = 112.0 oz and standard deviation U/\/; = 20.6/V'10 = 6.51 oz. It follows that

6.51 6.51
= $(2.15) — D(—2.15)
= P(2.15) — [1 — BQ2.15)] = 2d(2.15) — 1

126.0 — 112.0 8.0 — 112.0
Pr(98.0 < ¥ < 126.0) = <I>< ) - @(9 )

Refer to Table 3 in the Appendix and obtain
Pr(98.0 = x < 126.0) = 2(.9842) — 1.0 = .968
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llustration of the
central-limit theorem
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FIGURE 6.5
Distrioution of single
serum-iriglycerice
measurements and of
means of such
measurements over
samples of size n
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EXAMPLE 628

Distribution of means

Distribution of over samples of size n
single measurements X~ N(u, o2/n)
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(@) Individual serum-triglyceride values (b) Mean serum triglycerides

Thus, 96.8% of the samples of size 10 would be expected to have mean birthweights
between 98 and 126 oz if the central-limit theorem holds. This value can be checked by referring
to Figure 6.2(a). Note that within a specific column 4 rows of *’s correspond to 2% of the
distribution. Thus, for each column a row of *’s corresponds to 0.5% of the distribution.
Furthermore, the 90 column corresponds to the birthweight interval 90.0-91.9, the 92 column
to 92.0-93.9, and so forth. Note that one column of *’s is in the 90 column, one in the 94
column, two in the 96 column, three in the 128 column, and two in the 126 column. Thus 4
rows of *#’s (4 X 0.5% = 2% of the distribution) are less than 98.0 oz, and 5 rows of *’s
(5 X 0.5% = 2.5% of the distribution) are greater than or equal to 126.0 oz. It follows that
100% ~ 4.5% = 95.5% of the distribution is actually between 98 and 126 oz. This value
corresponds well to the 96.8% predicted by the central-limit theorem, showing that the central-
limit theorem holds for averages from samples of size 10 drawn from this population. mmm

Interval Estimation—Known Variance

We have been discussing the rationale for using x to estimate the mean of a distribution
and have given a measure of variability of this estimate, namely, the standard error.
These statements hold for any underlying distribution. However, we frequently wish
to obtain an interval of plausible estimates of the mean as well as a best estimate of
its precise value. Our interval estimates will hold exactly only if the underlying dis-
tribution is normal and only approximately if the underlying distribution is not normal,
as stated in the central-limit theorem.

Obstetrics Suppose the first sample of 10 birthweights given in Table 6.4 has been drawn.
Our best estimate of the population mean u would be the sample mean ¥ = 116.9 oz. Although
116.9 oz is our best estimate of w, we still are not certain that w is 116.9 oz. Indeed, if the
second sample of 10 birthweights had been drawn, a point estimate of 132.8 oz would have
been used. Our point estimate would certainly have a different meaning if we were quite certain
in some sense that w was within 1 oz of 116.9 rather than within 1 1b (16 oz). 1T

We have assumed previously that the distribution of birthweights in Table 6.2 was
normal with mean w and variance 2. It follows from our previous discussion of the
properties of the sample mean that ¥ ~ N(u, o/n). Thus, if u and o were known,
then the behavior of the set of sample means over a large number of samples of size
n would be precisely known. In particular, 95% of all such sample means will fall
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within the interval (u — 1.960/ Vh, w + 1.960/ \V'n). This statement can be written
alternatively as follows:

m

Pr(p — 1.960/Vn <x < p + 1.960/\Vn) = .95

The inequality in (6.4) can actually be written as a set of two inequalities,
w—190/Vn<x and x<pu+ 1.960/Vn

Suppose 1.960/Vn is added to both sides of the first inequality and 1.96a/Vn is
subtracted from both sides of the second inequality. The following inequalities are
then obtained:

pw<x+190c/Vn and - 1.960/Va < pu
If these two inequalities are combined into one inequality, the result is
¥ — 1.960/Vn < p <%+ 1.960/Vn

Thus, (6.4) can be rewritten in the following form:

Pr(x — 1.960/Vn < u < x + 1.960/Vn) = .95

DEFINITION 6.13

EXAMPLE 629

ENEEN NSNS SN I NSNS SRS NEN NN NSNS NN
A 95% confidence interval (CI) for u when o? is known is defined by

x — 1.960/Vn, x + 1.965/Vn) .

You may be puzzled at this point as to what the confidence interval means. The
parameter u is a fixed unknown constant. How can we state that the probability that
it lies within some specific interval is 95%? The key point to understand is that the
boundaries of the interval depend on the sample points chosen (or more precisely, on
the sample mean) and will vary from sample to sample. Furthermore, 95% of such
intervals that could be constructed from repeated random samples of size n will contain
the parameter w.

Obstetrics Consider the 5 samples of size 10 from the population of birthweights as shown
in Table 6.4 (p. 147). Assume that ¢ is known to be 20. The interval

& — 1.960/Vn, T + 1.960/Vn) = (f _ 1.9620) _ 1.96(20))

s X
V10 V10
=& - 12.4, % + 12.4)

will be different for each sample and is given in Figure 6.6. A dashed line has been added to
represent an imaginary value for p. The idea is that over a large number of hypothetical samples
of size 10, 95% of such intervals will contain the parameter u. Any one interval from a particular
sample may or may not contain the parameter n. For example, in Figure 6.6 the first, third,
fourth, and fifth intervals contain the parameter u, whereas the second interval does not.
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FIGURE 6.6

A caliection of 95%
confidence intervals for
the mean p as
computed from
repeated samples of
size 10 (see Table 6.4)
from the population of
birthweights given in
Table 6.2
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Therefore, we cannot say that there is a 95% chance that the parameter p will fall within
a particular 95% CI. However, we can say the following:

Over the collection of all 95% confidence intervals that could be constructed from repeated
random samples of size n, 95% will contain the parameter u.

EXAMPLE 630

SOLUTION

S

The length of the confidence interval gives some idea of the precision of the point estimate
X. In this particular case, the length of each confidence interval is about 25 oz, which makes
the precision of the point estimate X doubtful and implies that a larger sample size is needed to
get a more precise estimate of . smm

Gynecology Compute a 95% CI for the underlying mean basal body temperature using the
data in Example 6.24 (p. 157), assuming that the standard deviation is 0.2°.

The 95% CI is given by

X+ 1.960/Vn = 97.2° £ 1.96(0.2)/V10 = 97.2° + 0.12°

= (97.08°, 97.32°) e

We are frequently interested in obtaining confidence intervals with levels of con-
fidence other than 95%. In particular, we would like to develop confidence intervals
with confidence level 100% X (1 — @) for any arbitrary «. This interval can be
developed in the same way as the 95% confidence interval in (6.5). In particular, if
X ~ N(u, a?/n), then by definition, 100% X (I — a) of all sample means will fall
within the interval (u — zl_a/2a/\/ﬁ, u+ zl_a/zo'/\/;), or alternatively,

Prip — Zl——a/ZU/\/; <x<p+ Z]_a/za/\/;l-) =1]1—-a
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z(a/2) = -z(1-a/2) 
=>
z(a/2) to z(1-a/2) == -z(1-a/2) to z(1-a/2)




DEFINITION 6.14

EXAMPLE 631

SOLUTION
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This can be written as two inequalities
® = zl_a/zo'/\/; <x and xI<upu-+ zl_a/zo/\/;

It zl,a/za/\/ﬁ is added to both sides of the first inequality and zl_a/zcr/\/; is
subtracted from both sides of the second inequality, we obtain

w<Xx+ zléa/za/\/; and X — zl_a/za/\/; < u
or Pr(x — 21_0/20'/\/; <u<x+ z,_a/zo/\/Z) =1-«
SENEEEEENEENSEEESNEENEEEENESEEEEEEENE N NN NS AR NN RN
A 100% X (1 — a) confidence interval for u is defined by the interval
(x — Z1—a/20'/\/;, x + z,_a/z(f/\/;)

where z;_,/, equals the upper /2 percentile of an N(0, 1) distribution. ]

Suppose the first sample in Table 6.4 has been drawn. Compute a 99% CI for the underlying
mean birthweight, assuming that o = 20.

This 99% CI is given by
(116.9 — z,95(20)/V10, 116.9 + z 695(20)/V10)
From Table 3 of the Appendix we see that z go5 = 2.576, and therefore the 99% CI is
(116.9 — 2.576(20)/V10, 116.9 + 2.576(20)/V10) = (100.6, 133.2) mnm

Notice that the 99% confidence interval (100.6, 133.2) computed in Example 6.31
is wider than the corresponding 95% confidence interval (104.5, 129.3) computed for
the first sample in Figure 6.6. The rationale for this difference is that the higher the
level of confidence desired that w lies within an interval, the wider the confidence
interval must be. Indeed, for 95% confidence intervals the length was 2(1.96)c/ Vn;
for 99% confidence intervals the length was 2(2.576)a/ Vn.In general, the length of
the 100% X (1 — a) confidence interval is given by

221 _gp0/Vn

Therefore, we can see that the length of a confidence interval is governed by three
variables: n, o, and a.

Factors Affecting the Length of a Confidence interval
The length of a 100% X (1 — a) confidence interval equals 2z,_,,,0/ Vn and is determined
by n, o, and «.

n. As the sample size (n) increases, the length of the confidence interval decreases.

o. As the standard deviation (o), which reflects the variability of individual observations,
increases, the length of the confidence interval increases.

«. As the confidence desired increases (« decreases), the length of the confidence interval
increases.
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EXAMPLE 632

SOLUTION

EXAMPLE 633

SOLUTION

EXAMPLE 634

SOLUTION

Gynecology Compute a 95% CI for the underlying mean basal body temperature using the
data in Example 6.24, assuming that the number of days sampled is 100 rather than 10 and the
standard deviation = 0.2°.

The 95% CI is given by
97.2° + 1.96(0.2)/V100 = 97.2° = 1.96(0.2)/10 = 97.2° = 0.04° = (97.16°, 97.24°)

Notice that this interval is much narrower than the corresponding interval (97.08°, 97.32°) based
on a sample of 10 days given in Example 6.30. (1]

Compute a 95% CI for the underlying mean basal temperature using the data in Example 6.24,
assuming that the standard deviation of basal body temperature is 0.4° rather than 0.2° with a
sample size of 10.

The 95% CI is given by
97.2° = 1.96(0.4)/V'10 = 97.2° £ 0.25° = (96.95°, 97.45°

Notice that this interval is much wider than the corresponding interval (97.08°, 97.32°) based
on a standard deviation of 0.2° with a sample size of 10. L 1] ]

Usually only n and « can be controlled. o is a function of the type of variable
being studied, although o itself can sometimes be decreased, if changes in technique
can reduce the amount of measurement error, day-to-day variability, and so forth. An
important way in which o can be reduced is by obtaining replicate measurements for
each individual and using the average of several replicates for an individual, rather
than a single measurement.

To this point confidence intervals have been used mainly as descriptive tools for
characterizing the precision with which the parameters of a distribution can be esti-
mated. Another use for confidence intervals is in making decisions on the basis of
the data.

Cardiovascular Disease, Pediatrics Suppose we know from large studies that the mean
cholesterol level in children ages 2—14 is 175 mg%/mL and the standard deviation is 30 mg%/
mL. We wish to see if there is a familial aggregation of cholesterol levels. Specifically, we
identify a group of fathers who have had a heart attack and have elevated cholesterol
levels (= 250 mg%/mL) and measure the cholesterol levels of their offspring within the
2—-14 age range.

Suppose we find that the mean cholesterol level in a group of 100 such children is
207.3 mg%/mL. Is this value sufficiently far from 175 mg%/mL for us to believe that the
underlying mean cholesterol level in the population of all children selected in this way is greater
than 175 mg%/mL?

One approach would be to construct a 95% confidence interval for u on the basis of our sample
data. We then could make the following decision: If the interval contains 175 mg%/mL, then
we cannot say that the underlying mean for this group is any different than the mean for all
children (175), because 175 is among the plausible values for u provided by the 95% confidence
interval. We would decide that there is no demonstrated familial aggregation of cholesterol
levels. If the confidence interval does not contain 175, then we would conclude that the true
underlying mean for this group is greater than 175 and therefore there is a demonstrated familial
aggregation of cholesterol levels. The basis for this decision rule is discussed in the chapters
on hypothesis testing.
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The confidence interval in this case is given by

[207.3 — z.,5(30)/V100, 207.3 + 2 475(30)/V100]
= [207.3 — 1.96(30)/10, 207.3 + 1.96(30)/10] = (201.4, 213.2)

Clearly, 175 is far from the lower bound of the interval, and we thus conclude that there is
familial aggregation of cholesterol. amEm

f Distribution

In the previous section the problem of constructing confidence intervals for the
mean of a normal distribution when the variance is known was discussed. This sit-
uation is somewhat artificial, since the population variance is seldom known when
dealing with actual data. The first step in constructing confidence intervals in the
previous section was to assume that if the individual observations came from an
underlying normal distribution with mean u and variance o2, then the quantity
x - w/ (cr/\/;) ~ N(0, 1). Since o is unknown, it is reasonable to estimate o by
the sample standard deviation s and to try to construct confidence intervals using the
quantity (f — w)/(s/Vn). The problem is that this quantity is no longer normally
distributed.

This problem was first solved in 1908 by a statistician named William Gossett.
For his entire professional life, Gossett worked for the Guinness Brewery in Great
Britain. He chose to identify himself by the pseudonym “Student,” and thus the dis-
tribution of (x — w)/ (s/\/;) is sometimes referred to as Student’s ¢ distribution.
Gossett found that the shape of the distribution depended on the sample size n. Thus,
the ¢ distribution is not a unique distribution but is instead a family of distributions
indexed by a parameter referred to as the degrees of freedom (df) of the distribution.

If x;, ..., x, ~ N(u, 0 and are independent, then (X — w)/(s/ V'n) is distributed as a ¢
distribution with (n — 1) degrees of freedom (df).

DEFINITION 6.15

EXAMPLE 635
SOLUTION

Once again, Student’s ¢ distribution is not a unique distribution but is a family of
distributions indexed by the degrees of freedom d. The ¢ distribution with d degrees
of freedom is sometimes referred to as the z; distribution.

EESEENEENEEEEEEEAEEEENES USSR ENENENENEEE NN NSNS NN NN NN NN NN NN NN
The 100 x uth percentile of a ¢ distribution with 4 degrees of freedom is denoted by 7, ,,,
that 1s,

Prit,<t;)=u |

What does t,, g5 mean?

ty0,.95 is the 95th percentile or the upper 5th percentile of a ¢ distribution with 20 degrees of
freedom. LT
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FIGURE 6.7
Cornparison of
Student's f distrioution
with d degrees of
freedom with an MG, 1)
disfrioution

TABLE 6.6
Comparison of the
@75t percentie of

the 1 distribution
and the normal
distrioution

It is interesting to compare a t distribution with d degrees of freedom to an
N(0, 1) distribution. The density functions corresponding to these distributions are
depicted in Figure 6.7.

Frequency

0 / \ Value
oy

dl —a

Notice that the ¢ distribution is symmetric about 0 but is more spread out than the
N(O, 1) distribution. It can be shown that for any a, where a > .5, 1, ,_, is always
larger than the corresponding percentile for an N(0, 1) distribution (z,_,). This rela-
tionship is depicted in Figure 6.7. However, as d becomes large, the ¢ distribution
converges to an N(0, 1) distribution. An explanation for this principle is that for
finite samples the sample variance (s°) is an approximation to the population variance
(o). This approximation gives the statistic (¥ — )/(s/Vn) more variability than the
corresponding statistic (¥ — w)/(g/Vn). As n becomes large, this approximation gets
better and s* will converge to o exactly. The two distributions thus get more and
more alike as n becomes large. The upper 2.5th percentile of the ¢ distribution for
various degrees of freedom and the corresponding percentile for the normal distribution
are given in Table 6.6.

d fa, 975 Zg7s d ta, 975 Zg75
4 2.776 1.960 60 2.000 1.960
9 2.262 1.960 o0 1.960 1.960

29 2.045 1.960

The difference between the ¢ distribution and the normal distribution is greatest
for small values of n (n < 30). Table 5 in the Appendix gives the percentage points
of the ¢ distribution for various degrees of freedom. The degrees of freedom are given
in the first column of the table, and the percentiles are given across the first row. The
uth percentile of a ¢ distribution with d degrees of freedom is found by reading across
the row marked d and reading down the column marked u.
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Find the upper 5th percentile of a ¢ distribution with 23 df.
Find t,; 5, which is given in row 23 and column 0.95 of Table 5 and is 1.714. (]

Statistical packages such as Minitab, SPSS*, or SAS will also compute exact
probabilities associated with the ¢ distribution. This is particularly useful for values of
the degrees of freedom (d) which are not given in Table 5.

Interval Estimation—Unknown Variance

Using similar logic to that in Section 6.5.4, we can show that a 100% X (1 — «) confidence
interval for the mean u of a normal distribution with unknown variance is given by

x - tn*l.lfa/Zs/\/;a X+ tn—l,l*a/ZS/\/"l)

To show this, we see that since (x — w)/(s/V'n) follows a t,_, distribution, it follows

that —
X — [
Pr(t_ < —=<t, 4 q_ >=1—a
n—1,a/2 s/\/r; n—1,1—a/2

that is, there is a probability of 1 — « that a random variable that follows a ¢,_,
distribution will fall between the upper and lower /2 percentiles. This inequality can
be written in the form of two inequalities:

X— M X = M
t,_ < —F= and <t, -
n—1,a/2 S/\/I; S/\/; n—1,1—a/2

Both sides of each inequality are now multiplied by s/ Vn and u 1s added to both
sides to obtain

/.L + tn-],a/zs/\/; < f and f < t’l*l,l*’ﬂ/2s/\/; + I.L

Finally, tn,l’a/Zs/\/;z_ is subtracted from both sides of the first inequality and
tam1.1-as25/ V'n is subtracted from both sides of the second inequality, yielding

m<Xx-— tnvl’a/zs/\/r: and X =ty 1, was/ VR <
Expressed as one inequality, this is
X - tn—l,l—a/Zs/\/r7 <P <Xx- ln—l,a/Zs/\/E

From the symmetry of the ¢ distribution, t,_; o/ = —1,_1|_a/2, and this inequality
can be rewritten as

X = by g-a28/ VN < <Z+ 1, 1 _aps/Vn
and we can say that
Pr(x — tn—l,l—a/2s/\/’; <p<x+ t,,71’1~a/2s/\/5) =1-«
Thus, the interval (x — tn_l,l_a/zs/\/ﬁ, X+ tn—l,]—a/2s/\/;) is a 100% X (1 — a)

confidence interval for u.
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EXAMPLE 6.3/

SOLUTION

SECTION 6.6

o)

Obstetrics Now consider the birthweight data from the first sample in Table 6.4. Compute a
95% confidence interval for u assuming that the variance is unknown.

Assuming that the variance is unknown, a 95% confidence interval for w is given as

[116.90 — 14 475(21.70)/V10, 116.90 + 15 5(21.70)/V10]

= [116.90 — 2.262(21.70)/V10, 116.90 + 2.262(21.70)/V 10] = (101.38, 132.42)
(] ]

Generally, confidence intervals based on the ¢ distribution (unknown variance)
will be longer than confidence intervals based on the normal distribution (known
variance). That is, the range of plausible values for p will be wider, and it will be
harder to rule out particular values, such as was attempted in Example 6.34. However,
this principle does not always apply, since for a particular sample, the sample variance

s? may be less than the population variance .

Estimation of the Variance of a Distribution

Point Estimation

In Chapter 2, the sample variance was defined as

n

IR T %

n—1{=3

This definition is somewhat counterintuitive, since the denominator would be expected
to be n rather than n — 1. A more formal justification for this definition is now given.
If our sample x;, . . . , x, is considered as coming from some population with mean
i and variance o2, then how can the unknown population variance o be estimated
from our sample? The following principle aids in deciding on a method of estimation:

53]

Let x;, . . ., x, be a random sample from some population with mean w and variance o?.
The sample variance s is an unbiased estimator of o over all possible random samples
of size n that could have been drawn from this population; that is, E(s?) = o~.

EXAMPLE 638

SCLUTION

Therefore, if repeated random samples of size n are selected from the population,
as was done in Table 6.4, and the sample variance s° is computed from each sample,
then the average of these sample variances over a large number of such samples of
size n will be the population variance ¢?. This statement holds for any underlying
distribution.

Gynecology Estimate the variance of the distribution of basal body temperature using the data
in Example 6.24.

We have S
av =3 > (x, — % = 0.189% = 0.0356
i=1

which is an unbiased estimate of o2. 1T
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Note that the intuitive estimator for o with n in the denominator rather than

n — 1, that is,

1 n

— 2 (= X

n =1
will tend to underestimate the underlying variance o2 by a factor of (n — 1)/n. This
factor is considerable for small samples but tends to be negligible for large samples.
A more complete discussion of the relative merits of different estimators for o is
given in [3].

462 The Chi-Square Distribution

The problem of interval estimation of the mean of a normal distribution was discussed
in Sections 6.5.4 and 6.5.6. We often want to obtain interval estimates of the variance
as well. Once again, as was the case for the mean, the interval estimates will hold
exactly only if the underlying distribution is normal. The interval estimates will perform
much more poorly for the variance than for the mean if the underlying distribution is
not normal, and they should be used with caution in this case.

EXAMPLE 639 Hypertension A new machine has been produced, called an arteriosonde machine, that “prints”
blood-pressure readings on a tape so that the measurement can be read rather than heard. A
major argument for using such a machine is that the variability of measurements obtained by
different observers on the same person will be lower than with a standard blood-pressure cuff.

Suppose we have the data presented in Table 6.7, consisting of systolic blood-pressure
measurements obtained on 10 people and read by 2 observers. We will use the difference d;
between the first and second observer to assess interobserver variability. In particular, if we
assume that the underlying distribution of these differences is normal with mean @ and
variance o2, then it is of primary interest to estimate o2, The higher ¢? is, the higher the
interobserver variability.

TABLE 6.7 Observer
Systolic olood-pressare

measurements Person (/) 1 2 Ditference (d)
rm HG) frome an
arterioso~de nochine 1 194 200 -6
obtained from 10 2 126 123 +3
neople and read oy 2 3 130 128 +2
observers 4 08 101 3
5 136 135 +1
6 145 145 0
7 110 111 -1
8 108 107 +1
9 102 99 +3
10 126 128 -2

We have seen previously that an unbiased estimator of the variance o? is given by the
sample variance s2. In this case,
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DEFINITION 6.16

FIGURE 6.8

Ceneral shape of
various x# distrioutions
with n af

2= [Za- (Za) fu]/s

_ L8P + BPH  H (Z2P1 = [(26) + (B) + -+ (<2)P/10
9

= 8.178

How can an interval estimate for o2 be obtained? 11

To obtain an interval estimate for o, a new family of distributions, called
chi-square (x?) distributions, must be introduced to enable us to find the sampling
distribution of s? from sample to sample.

SESSEEEEEESEEEEEEEEEEEEEEEANNANAEENNEESEEEEESEEEEEEEEEREEEEREEEREN
n

If G=2>x

i=1
where X1y oo .5 X%, ~ NGO, D

and arc independent, then G is said to follow a chi-square distribution with n degrees of
freedom (df). The distribution is often denoted by y>. ]

The chi-square distribution is actually a family of distributions indexed by the
parameter n referred to, again, as the degrees of freedom, as was the case for the
t distribution. Unlike the ¢ distribution, which is always symmetric about O for any
degrees of freedom, the chi-square distribution only takes on positive values and is
generally skewed to the right, except for very large n (n = 100), where the distribution
becomes more symmetric. The general shape of these distributions is indicated in
Figure 6.8.
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For n = 1, 2, the distribution has a mode at O ([3]). For n = 3, the distribution
has a mode greater than O and is skewed to the right. The skewness diminishes as »
increases. It can be shown that the expected value of an y2 distribution is n and the
variance is 2n.

EENEEEEEENSESESEESNEESNEESNSSEENEEEEEENEEE NN EEENENENNNENEEREEEE
The uth percentile of an x?2 distribution is denoted by x2 ,, where Pr(x2 < x2,) = u. These

percentiles are depicted in Figure 6.9 and appear in Table 6 in the Appendix. ]
P
Q
5 area = u
=
g
T
0 Zzn, " Value

Table 6 is constructed similarly to the ¢ table (Table 5), with the degrees of
freedom (d) indexed in the first column and the percentile (x) indexed in the first
row. The principal difference between the two tables is that both lower (u < 0.5) and
upper (u > 0.5) percentiles are given for the chi-square distribution, whereas only
upper percentiles are given for the ¢ distribution. The ¢ distribution is symmetric about
0, and therefore any lower percentile can be obtained as the negative of the corre-
sponding upper percentile. Because the chi-square distribution is, in general, a skewed
distribution, there is no simple relationship between the upper and lower percentiles.

Find the upper and lower 2.5th percentile of a chi-square distribution with 10 df.
According to Table 6, the upper and lower percentiles are given by

Xio. 975 = 20.48 and X025 = 3.25 respectively. (] 1]

For values of d not given in Table 6 a computer program, such as MINITAB, can
be used.

Interval Estimation
To obtain an interval estimate of o2, we need to find the sampling distribution of 5.
Suppose we assume that x,, . . . , x, ~ N(u&, o). Then, it can be shown that

2 szgﬁl

n—1
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6.11

6.12

6.13

To see this, we recall from Section 5.5 that if X ~ N(u, o2), then if we standardize
X (that is, we subtract u and divide by o), thus creating a new random variable ¥ =
(X — w)/o, then Y will be normally distributed with mean O and variance 1. Thus,
from Definition 6.16 we see that

> = > (x; — w?/o? ~ x2 = chi-square distribution with n df
=1 =1

Since we usually don’t know u, we estimate u by X. However, it can be shown that
if we substitute xfor u in (6.11), then we lose one df [3], resulting in the relationship

2 (x; — %)%/ ~ x2_,
=

. However, we recall from the definition of a sample variance that s* =
zizl (x; — ©%/(n — 1). Thus, multiplying both sides by (n — 1) yields the

relationship
n
(n = D52 = 2 (x; = 77

Substituting into Equation 6.12, we obtain

(n — 1)s?

_ 2
o2 Xn—1

If we multiply both sides of (6.13) by o?/(n — 1), we obtain Equation (6.10),

2
2

2~ IXn—l

N
n—

Thus, from (6.10) we see that s follows a chi-square distribution with n — 1 df
multiplied by the constant ?/(n — 1). Manipulations similar to those given in Section
6.5.4 can now be used to obtain a 100% X (1 — «) confidence interval for o2.

In particular, from (6.10) it follows that

p{%{l& <2< X1 11—a[2> =1 -«
n— n -

This inequality can be represented as two separate inequalities:

2.2 2.2
o?x2_ O Xa11-af
——-——A—L—’f" 11"2<s2 and  §2 < er ”1"2
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If both sides of the first inequality are multiplied by (n — 1)/ X5—1,a/2, and both sides
of the second inequality are multiplied by (n — 1)/x3_) 1/, then

n— 1)s? n— 1)s?
ot < S—z—)— and —(2——)— < g?
Xn—1,a/2 Xn—1,1-a/2
or, upon combining these two inequalities,
n— 1)s? n— 1)s?
(= D o =)
Xn-1,1-a/2 XnAl,a/Z

It follows that
_ 2 _ 2
Pr[r(g D™ g2 < ___(n2 Ls ] =1-a
Xn—-1,1-a/2 Xn—1,0/2

Thus, the interval [(n — 1)s?/x2_| 1—a/2, (n = Ds?/x3_1 as2] is 2 100% X (1 — @)
confidence interval for 2.

A 100% x (1 — a) confidence interval for o2 is given by

[(n — 1)5'2//\’%71,1—:1/2’ (n = l)sz/szrl,a/z]

EXAMPLE 641

SOLUTION
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Hypertension We now return to the specific data set in Example 6.39. Suppose we wish to
construct a 95% confidence interval for the interobserver variability as defined by 2.

Since there are 10 people and s> = 8.178, the required interval is given by
9%/ x3. 975, 95%/x5..025) = [9(8.178)/19.02, 9(8.178)/2.70] = (3.87, 27.26)

Similarly, a 95% confidence interval for ¢ is given by (V3.87, V27.26) = (1.97, 5.22).
Notice that the confidence interval for o is not symmetric about s> = 8.178, in contrast to the
confidence intervals for u, which were symmetric about X. This characteristic is common in
confidence intervals for the variance.

The utility of the confidence interval for o for decision-making purposes might be achieved
if we had a good estimate of the interobserver variability of blood-pressure readings from a
standard cuff. For example, suppose we know from previous work that if two people are listening
to blood-pressure recordings from a standard cuff, then the interobserver variability as measured
by the variance of the set of differences between the readings of two observers is 35. This value
is outside the range of the 95% confidence interval for o2 (3.87, 27.26), and we thus conclude
that the interobserver variability is reduced by using an arteriosonde machine. Alternatively, if
this prior variance were 15, then we cannot say that the variances obtained from using the two
methods are different. (T 1]

Estimation for the Binomial Distribution

Point Estimation

Point estimation for the parameter p of a binomial distribution is discussed in this
section.
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EXAMPLE 642

Cancer Consider the problem of estimating the prevalence of malignant melanoma in 45-54-
year-old women in the United States. Suppose that a random sample of 5000 women is selected
from this age group and that 28 are found to have the disease. Let the random variable X;
represent the disease status for the ith woman, where X; = 1 if the ith woman has the disease

and O if she does not; i = 1, . . . , 5000. The random variable X, was also defined as a Bernoulli
trial in Definition 5.12. Suppose that the prevalence of the disease in this age group = p. How
can p be estimated? [T 1]

n
We let X = 2 X; = the number of women with malignant melanoma among the
i=1

n women. Based on (5.5) and Example 5.26, we have that E(X) = np and Var(X) =
npq. Note that X can also be looked at as a binomial random variable with parameters
n and p, since it represents the number of events in # independent trials.

Finally, consider the random variable p = sample proportion of events. In our
example, p = proportion of women with malignant melanoma. Thus,

=~ x =x/n.
n =

Since p is a sample mean, the results of (6.1) apply and we see that E(p) = E(X,) =
w = p. Furthermore, from (6.2) it follows that
Var(p) = o?/n = pg/n  and  se(p) = Vpq/n

Thus, for any sample of size n, the sample proportion p is an unbiased estimator of
the population proportion p. The standard error of this proportion is given exactly by
Vpg/n and is estimated by Vpg/n. These principles can be summarized as follows:

Point Estimation of the Binomial Parameter p

Let X be a binomial random variable with parameters n and p. An unbiased estimator of p

is given by the sample proportion of events p. Its standard error is given exactly by

\/M and is estimated by \/13517 )

EXAMPLE 643

SOLUTION

6/2

EXAMPLE 644

Estimate the prevalence of malignant melanoma in Example 6.42 and give its standard error.

Our best estimate of the prevalence rate of malignant melanoma among 45-54-year-old women
is 28/5000 = .0056. Its estimated standard error is

V.0056(.9944)/5000 = .0011 umn

Interval Estimation—Normal-Theory Methods

Point estimation of the parameter p of a binomial distribution was covered in
Section 6.7.1. How can an interval estimate of the parameter p be obtained?

Cancer Suppose we are interested in estimating the prevalence rate of breast cancer among
50-54-year-old women whose mothers have had breast cancer. Suppose that in a random sample
of 10,000 such women, 400 are found to have had breast cancer at some point in their lives.
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We have shown that the best point estimate of the prevalence rate p is given by the sample
proportion p = 400/10,000 = .040. How can an interval estimate of the parameter p be
obtained? (See the solution in Example 6.45.) (11

We will assume that the normal approximation to the binomial distribution is
valid—whereby from (5.8) the number of events X observed out of n women will be
approximately normally distributed with mean np and variance npq or, correspondingly,
the proportion of women with events = p = X/n is normally distributed with mean
p and variance pg/n.

The normal approximation can actually be justified on the basis of the central-
limit theorem. Indeed, in the previous section we showed that p could be represented
as an average of n Bernoulli trials, each of which has mean p and variance pq. Thus,
for large n, from the central-limit theorem, we can see that p = x is normally distributed
with mean . = p and variance o?/n = pq/n, or

p ~ N(p, pq/n)

Alternatively, since the number of successes in » Bernoulli trials = X = np (which
is the same as a binomial random variable with parameters »n and p), if (6.16) is
multiplied by n,

6.17

X ~ N(np, npq)

This formulation is indeed the same as that for the normal approximation to the binomial
distribution, which was given in (5.8). How large should n be before this approximation
can be used? In Chapter 5 we said that the normal approximation to the binomial
distribution is valid if npg = 5. However, in Chapter 5 we assumed that p was known,
whereas here we assume that it is unknown. Thus, we shall estimate p by p and g by
g = 1 — p and will apply the normal approximation to the binomial if npg = 5.
Therefore, the results of this section should only be used if npg = 5. An approximate
100% X (1 — «) confidence interval for p can now be derived from (6.16) using
methods similar to those given in Section 6.5.4. In particular, from (6.16), we see
that

Pr(p = zi_apaVpg/n <p <p + z1_0Vpg/n) = 1 — «a
This inequality can be written in the form of two inequalities:
P~ Zi—apVpg/n <p and P <p+z_4,Vpa/n

To explicitly derive a confidence interval based on these inequalities requires solving
a quadratic equation for p in terms of p. To avoid this complexity, it is customary to
approximate Vpg/n by Vpg/n and rewrite the inequalities in the form

P~ Zi—apVPa/n < p and P <p+zi_apVpa/n
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We now add z;,_,,,Vpg/n to both sides of the first inequality and subtract this quantity
from both sides of the second inequality, obtaining

P <P+ z_apVPi/n and P —z)_o,pVPg/n <p
Combining these two inequalities, we get
P = 21-apVPg/n <p <p+ 214, VDPg/n
or Pr(p = z1-apVPg/n <p <p +z14pVpg/n) =1 - a
The approximate 100% X (1 — «) confidence interval for p is given by

(ﬁ T Z1-a/2 V¥ ﬁQ/n’ ﬁ + Z1—a/2 ¥ i)f]/n)

Normal-Theory Method for Obtaining a Confidence Interval
for the Binomial Parameter p

An approximate 100% X (1 — «) confidence interval for the binomial parameter p based on
the normal approximation to the binomial distribution is given by

(ﬁ — Zj—qnV ﬁq/n’ ﬁ + Zi—a/2 ¥ ﬁQ/n)

This method of interval estimation should only be used if npg = 5.

EXAMPLE 645

SOLUTION

673

EXAMPLE 646

Cancer Using the data in Example 6.44, derive a 95% confidence interval for the prevalence
rate of breast cancer among 50-54-year-old women whose mothers have had breast cancer.

p=.040 a=.05 z_,,=196 n= 10,000

Therefore, an approximate 95% confidence interval is given by

[.040 — 1.96V.04(.96)/10,000, .040 + 1.96V.04(.96)/10,000]
= (.040 — .004, .040 + .004) = (.036, .044)

Suppose we know that the prevalence rate of breast cancer among all 50—54-year-old
American women is 2%. Since 2% does not fall in the preceding interval, we can be quite
confident that the underlying rate for the group of women whose mothers have had breast cancer
is higher than the rate in the general population. (T 1]

Interval Estimation—Exact Methods

The question remains, How is a confidence interval for the binomial parameter p
obtained when either the normal approximation to the binomial distribution is not valid
or a more exact confidence interval is desired?

Cancer, Nutrition Suppose we want to estimate the rate of bladder cancer in rats that have
been fed a diet high in saccharin. We feed this diet to 20 rats and find that 2 develop bladder

cancer. In this case our best point estimate of p is p = 5% = .1. However, since

npg = 20(2/20)(18/20) = 1.8 < 5
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the normal approximation to the binomial distribution cannot be used and thus normal theory
methods for obtaining confidence intervals are not valid. How can an interval estimate be
obtained in this case? L1

A small sample method for obtaining confidence limits will be presented.

Exact Method for Obtaining a Confidence Iinterval for the Binomial Parameter p

An exact 100% X (1 — a) confidence interval for the binomial parameter p that is always
valid is given by (p,, p,), where p|, p, satisfy the equations

o S /n
PrX=xlp=p) = 5 = kz <k>p’f(1 —p)k

« S (n
PriX<x|p=py = 5= kzo <k)P§(1 - p)rt

6.20

A rationale for this confidence interval will be given in our discussion of hypothesis
testing for the binomial distribution in Section 7.10.2.

The main problem with using this method is the difficulty in computing expressions
such as

> (”)pk(l — pyk
k=0 \k

Fortunately, special tables exist for the evaluation of such expressions, one of which
is given in Table 7 in the Appendix. This table can be used as follows:

Exact Confidence Limits for Binomial Proportions

(1) The sample size (n) is given along each curve. Two curves should correspond to a given
sample size. One curve is used to obtain the lower confidence limit and the other to
obtain the upper confidence limit.

(2) If 0 = p < .5, then
{a) Refer to the lower horizontal axis and find the point corresponding to p.

(b) Draw a line perpendicular to the horizontal axis and find the two points where
this line intersects the two curves identified in 1.

{c) Read across to the left vertical axis; the smaller value corresponds to the
lower confidence limit and the larger value to the upper confidence limit.

(3) If .5 < p = 1.0, then
{a) Refer to the upper horizontal axis and find the point corresponding to p.
(b) Draw a line perpendicular to the horizontal axis and find the two points where
this line intersects the two curves identified in 4.
(c) Read across to the right vertical axis; the smaller value corresponds to the
lower confidence limit and the larger value to the upper confidence limit.
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EXAMPLE 64/

SOLUTION

EXAMPLE 648

SOLUTION

SECTION 6.8
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EXAMPLE 649

DEFINITION 6.18

Cancer Derive an exact 95% confidence interval from the rat-bladder cancer data given in

Example 6.46.

We refer to Table 7 in the Appendix o = 0.05, and identify the two curves with n = 20. Since
p = .1 = .5, we refer to the lower horizontal axis and draw a vertical line at .10 until it
intersects the two curves marked n = 20. We then read across to the left vertical axis and find
the confidence limits of .01 and .32. Thus, the exact 95% confidence interval = (.01, .32).
Notice that this confidence interval is not symmetric about p = .10. (T ]

Health Promotion Suppose that as part of a program for counseling patients with many risk
factors for heart discase, 100 smokers are identified. Of this group, 10 give up smoking for at
least 1 month. After a 1-year follow-up, 6 of the 10 patients are found to have taken up smoking
again. The proportion of ex-smokers who start smoking again is referred to as the recidivism
rate. Derive a 99% confidence interval for the recidivism rate.

Exact binomial confidence limits must be used, since
npg = 10(.6)(.4) = 2.4 <5

We refer to the upper horizontal axis of the chart marked &« = 0.01 in Table 7 and note the
point p = .60. We then draw a vertical line at .60 until it intersects the two curves marked n
= 10. We then read across to the right vertical axis and find the confidence limits of .19 and
.92. Thus, the exact 99% confidence interval = (.19, .92). (11

More extensive and precise exact binomial confidence limits are available in Geigy
Scientific Tables [4].

Estimation for the Poisson Distribution

Point Estimation

In this section, we discuss point estimation for the parameter A of a Poisson distribution.

Cancer, Environmental Health A study was performed in Woburn, Massachusetts, in the
1970s to look at possible excess cancer risk in children, with a particular focus on leukemia.
An important environmental issue in the investigation concerned the possible contamination of
the town’s water supply. Specifically, 12 cases of childhood leukemia (<< 19 years old) were
diagnosed in Woburn during the 1970s (January 1, 1970, to December 31, 1979). A key statistical
issue is whether this represents an excessive number of leukemia cases, assuming that Woburn
has had a constant 12,000 child residents (=< age 19) during this period and that the incidence
rate of leukemia in children nationally is 5 cases per 100,000 person-years. Can we estimate
the incidence rate of childhood leukemia in Woburn during the 1970s and provide a confidence
interval about this estimate? L]

We let X = the number of children who develop leukemia during the 1970s. Since
X represents a rare event, we will assume that X follows a Poisson distribution with
parameter u = AT. We know from Chapter 4 that for a Poisson distribution, E(X) =
AT, where T = time and A = number of events per unit time.

EENENEEEEEENEENENENESENE NN AN AN NN NN RN NN NN
A person-year is a unit of time defined as 1 person being followed for 1 year. ]
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This is a unit of follow-up time that is commonly used in longitudinal studies;
that is, studies where the same individual is followed over time.

Cancer, Environmental Health How many person-years were accumulated in the Woburn
study in Example 6.49?

In the Woburn study, there were 12,000 children who were each followed for 10 years. Thus,
a total of 120,000 person-years were accumulated. This is actually an approximation since the
children who developed leukemia over the 10-year period would only be followed up to the
time they developed the disease. It is also common to curtail follow-up for other reasons such
as death and development of other types of cancer. However, the number of children for whom
follow-up is curtailed for these reasons is small and the approximation is likely to be accurate.

Finally, although children have moved in and out of Woburn over the 10-year period, we
assume that there is no net migration in and out of the area during the 1970s. LT 1]

We now wish to assess how to estimate A based on an observed number of events
X over T person-years.

6.21]

Point Estimation for the Poisson Distribution

Suppose we assume that the number of events X over T person-years is Poisson-distributed
with parameter i = AT. An unbiased estimate of A is given by A = X/T, where X is the
observed number of events over T person-years.

If A is the incidence rate per person-year, 7 = number of person-years of follow-up,
and we assume a Poisson distribution for the number of events X over T person-years, then
the expected value of X is given by E(X) = AT. Therefore,

EQ\) = EX)/T
= AT/T = A

Thus, A is an unbiased estimate of A.

EXAMPLE 651

SOLUTION
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Cancer, Environmental Health Estimate the incidence rate of childhood leukemia in Woburn
during the 1970s based on the data provided in Example 6.49.

Since there were 12 events over 120,000 person-years, the estimated incidence rate =
12/120,000 = 1/10,000 = 0.0001 events per person-year. Since cancer incidence rates
per person-year are usually very low, it is customary to express such rates per 100,000
(or 10%) person-years; that is, to change the unit of time to 103 person-years. Thus, if the unit
of time = 10° person-years, then 7 = 1.2 and A = 0.0001(10% = 10 events per 100,000
person-years. mEw

interval Estimation

The question remains as to how to obtain an interval estimate for A. We use a similar
approach as was used to obtain exact confidence limits for the binomial proportion p
in (6.19). For this purpose, it will be easier to first obtain a confidence interval for
u = expected number of events over time T of the form (w;, u,) and then obtain
the corresponding confidence interval for A from (w,/T, m,/T). The approach is
given as follows:
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6.22

EXAMPLE 652

SOLUTION

EXAMPLE 653

SCLUTION

EXAMPLE 654

Exact Method for Obtaining a Confidence Interval for the Poisson Parameter A

An exact 100% X (1 — «a) confidence interval for the Poisson parameter A is given by
(my/T, py/T), where p,, u, satisfy the equations

PriX = xlp = p) = % = kE e uh/k!
=x
x—1
=1~ 2 e uk/k!
k=0
PriX <x|p=pu,) = % = kZO e r2 uk/k!

and x = observed number of events, 7 = number of person-years of follow-up.

As was the case in obtaining exact confidence limits for the binomial parameter p,
it is difficult to compute w,, u, exactly so as to satisfy (6.22). Table 8 in the Appendix
provides the solution to these equations. This table can be used to obtain 90%, 95%,
98%, 99%, or 99.8% confidence intervals for w if the observed number of events
(x) is = 50. The observed number of events (x) is listed in the first column, and the
level of confidence is given in the first row. The confidence interval is obtained by
cross-referencing the x row and the 1 — « column.

Suppose we observe 8 events and assume that the number of events is Poisson distributed with
parameter p. Find a 95% confidence interval for w.

We refer to Table 8 under the 8 row and the 0.95 column to obtain the 95% CI for u =
(3.45, 15.76). anm

We see that this confidence interval is not symmetric about x(8), since 15.76 — 8 =
7.76 > 8 — 3.45 = 4.55. This is true for all exact CI’s based on the Poisson distribution
unless x is very large.

Cancer, Environmental Health Compute a 95% confidence interval for both the expected
number of childhood leukemias () and the incidence rate of childhood leukemia per 10° person-
years (A) in Woburn based on the data provided in Example 6.49.

We observed 12 cases of childhood leukemia over 10 years. Thus, from Table 8, referring to
x = 12 and level of confidence 95%, we find that the 95% CI for u = (6.20, 20.96).
Since there were 120,000 person-years = T, a 95% CI for the incidence rate =
6.20 20.96 6.20 20.96
) X 103
120,000 " 120,000

) events per person-year or ( X 105> events per

120,000 ’ 120,000
10° person-years = (5.2, 17.5) events per 10° person-years = 95% CI for A. anm

Cancer, Environmental Health Interpret the results in Example 6.53. Specifically, do you
feel there was an excess childhood leukemia risk in Woburn, Massachusetts, relative to expected
U.S. incidence rates?
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Referring to Example 6.49, we note that the incidence rate of childhood leukemia in the United
States during the 1970s was 5 events per 10° person-years. We will denote this rate by A,.
Referring to Example 6.53, we see that the 95% CI for A in Woburn = (5.2, 17.5) events per
105 person-years. Since the 95% CI excludes A, (=5), we can conclude that there was a
significant excess of childhood leukemia in Woburn during the 1970s. Another way to express
these results is in terms of the standardized morbidity ratio (or SMR) defined as

Incidence rate in Woburn for childhood leukemia
U.S. incidence rate for childhood leukemia

SMR =

If the U.S. incidence rate is assumed known, then a 95% CI for SMR is given by

52 175
(?, —5-> = (1.04, 3.50). Since the lower bound of the CI for SMR is > 1, we conclude
there is a significant excess risk in Woburn. We pursue a different approach in Chapter 7,

addressing this issue in terms of hypothesis testing and p-values. amm

In some instances, a random variable representing a rare event over time is assumed
to follow a Poisson distribution but the actual amount of person-time is either unknown
or is not reported in an article from the literature. In this instance, it is still possible
to use Table 8 to obtain a confidence interval for w, although it is impossible to obtain
a confidence interval for A.

Occupational Health In Example 4.36, a study was described concerning the possible excess
cancer risk among employees with high exposure to ethylene dibromide (EDB) in two plants
in Texas and Michigan. Seven deaths due to cancer were reported over the period 1940-1975,
while only 5.8 cancer deaths were expected based on mortality rates for U.S. white males. Find
a 95% ClI for the expected number of deaths and assess whether there is an excess risk among
the exposed workers.

In this case, the actual number of person-years used in computing the expected number of deaths
was not reported in the original article. Indeed, the computation of the expected number of
deaths is complex and must consider that

(1) Each worker is of a different age at the start of follow-up.

(2) The age of a worker changes over time.

(3) Mortality rates for men of the same age change over time.

However, we can use Table 8 to obtain a 95% CI for . Since x = 7 events, we have a 95%
CI for p = (2.81, 14.42). Since the expected number of deaths based on U.S. mortality rates

for white males = 5.8, which falls within the preceding interval, we conclude that there is no
significant excess risk among the workers. amm

Table 8 can also be used for applications of the Poisson distribution other than those
based specifically on rare events over time.

Bacterlology Suppose we observe 15 bacteria in a petri dish and assume that the number of
bacteria is Poisson-distributed with parameter w. Find a 90% confidence interval for u.

We refer to the 15 row and the 0.90 column to obtain the 90% confidence interval
(9.25, 23.10). (11}
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EXAMPLE 65/

One-Sided Confidence Intervals

In the previous discussion of interval estimation, what are known as two-sided con-
fidence intervals have been described. Frequently, the following type of problem
occurs.

Cancer A standard treatment exists for a certain type of cancer, and the patients receiving the
treatment have a 5-year survival rate of 30%. A new treatment is proposed that has some
unknown survival rate p. We would only be interested in using the new treatment if it were
better than the standard treatment. Suppose that 40 out of 100 patients who receive the new
treatment survive for 5 years. Can we say that the new treatment is better than the standard
treatment? (]

One way to assess these data is to construct a one-sided confidence interval, where
we are interested in only one bound of the interval, in this case the lower bound. If
30% is below the lower bound, then it is an unlikely estimate of the 5-year-survival
rate for patients getting the new treatment. We could reasonably conclude from this
that the new treatment is better than the standard treatment in this case.

Upper One-Sided Confidence interval
for the Binomial Parameter p—Normal-Theory Method

An upper one-sided 100% X (1 — «) confidence interval is of the form p > p,; such that
Prip>p)=1-a«

If we assume that the normal approximation to the binomial holds true, then we can show
that this confidence interval is given approximately by

p>p =z Npi/n

This interval estimator should only be used if npg = 5.

To see this, note that if the normal approximation to the binomial distribution holds,
then p ~ N(p, pq/n). Therefore, by definition

Pr(p <p +z4Vpg/n)=1- «a
We approximate Vpg/n by Vpg/n and subtract z; ,Vpg/n from both sides of the
equation, yielding

P — 21-VPa/n <p

or  p>p—z_Vpg/n and Pr(p>p —z,_,Vpg/n) =1 — a
Therefore, if the normal approximation to the binomial distribution holds, then p >
P — z,_oVPg/n is an approximate 100% X (1 — «) one-sided confidence interval
for p.

Notice that z;_, is used in constructing one-sided intervals, whereas z,_,/, was
used in constructing two-sided intervals.
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Suppose a 95% confidence interval for a binomial parameter p is desired. What percentile of
the normal distribution should be used for a one-sided interval? a two-sided interval?

For a = .05, we use z,_ o5 = 295 = 1.645 for a one-sided interval and z; . 45,5 = z.g75 = 1.96
for a two-sided interval. (1]

Cancer Construct an upper one-sided 95% confidence interval for the survival rate based on
the cancer-treatment data in Example 6.57.

First check that npg = 100(.4)(.6) = 24 = 5. The confidence interval is then given by

Prip > .40 — z 4V .4(.6)/100] = .95
Prip > .40 — 1.645(.049)] = .95
Pr(p > 319) = .95

Since .30 is not within the given interval, we would conclude that the new treatment is better
than the standard treatment. mEm

If we were interested in 5-year death rates rather than survival rates, then a one-
sided interval of the form Pr(p < p,) = 1 — a would be appropriate, since we would
only be interested in the new treatment if its death rate were lower than that of the
standard treatment.

Lower One-Sided Confidence Interval
for the Binomial Parameter p—Normal-Theory Method

The interval p < p, such that
Prip<p))=1-«a

is referred to as a lower one-sided 100% X (1 — a) confidence interval and is given
approximately by

P <p+z.Vpg/n

This expression can be derived in the same manner as in (6.23) by starting with the
relationship

Prp >p—z-aVpg/n) =1 - «a
If we approximate Vpg/n by Vpg/n and add z,_,Vpg§/n to both sides of the
equation, we get

Pr(p <p + z-4Vpi/n) = 1 — «
Cancer Compute a lower one-sided 95% confidence interval for the death rate using the cancer-
treatment data in Example 6.57.
We have that p = .6. Thus, the 95% confidence interval is given by

Prip < .6 + 1.645V.6(.4)/100] = .95
Prip < .6 + 1.645(.049)] = .95
Pr(p < .681) = .95
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Since 70% is not within this interval, we can conclude that the new treatment has a lower death
rate than the old treatment does. amm

Similar methods can be used to obtain one-sided confidence intervals for the mean
and variance of a normal distribution, for the binomial parameter p and for the Poisson
expectation w using exact methods.

Summary

In this chapter the concept of a sampling distribution was introduced. This concept is
crucial to understanding the principles of statistical inference. The fundamental idea
is to forget about our sample as a unique entity; instead, regard it as a random sample
from all possible samples of size n that could have been drawn from the population
under study. Using this concept, X was shown to be an unbiased estimator of the
population mean wu; that is, the average of all sample means over all possible random
samples of size n that could have been drawn will equal the population mean. Fur-
thermore, if our population follows a normal distribution, then x has minimum variance
among all possible unbiased estimators and is thus referred to as a minimum-variance
unbiased estimator of w. Finally, if our population follows a normal distribution, then
x will also follow a normal distribution. However, even if our population is not normal,
the sample mean will still approximately follow a normal distribution for a sufficiently
large sample size. This very important idea, which justifies many of the hypothesis
tests we study in the remainder of this book, is called the central-limit theorem.

The idea of an interval estimate (or confidence interval) was then introduced.
Specifically, a 95% confidence interval is defined as an interval that will contain the
true parameter for 95% of all random samples that could have been obtained from the
reference population. The preceding principles of point and interval estimation were
applied to

(1) estimating the mean p of a normal distribution when the variance is known
(2) estimating the mean u of a normal distribution when the variance is unknown
(3) estimating the variance o> of a normal distribution
(4) estimating the parameter p of a binomial distribution
(5) estimating the parameter A of a Poisson distribution
(6) estimating the expected value w of a Poisson distribution
The ¢ and chi-square distributions were introduced to obtain interval estimates for (2)
and (3), respectively.

In Chapters 7 through 13, the discussion of statistical inference continues, focusing
primarily on testing hypotheses rather than on parameter estimation. In this regard

some parallels between inference from the points of view of hypothesis testing and
confidence intervals are discussed.
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Suppose we wish to construct a list of treatment assign-
ments for patients entering a study comparing different
treatments for duodenal ulcer.

6.1 Anticipating that 20 patients will be entered in the
study and 2 treatments will be used, construct a list of
random-treatment assignments starting in the 28th row of
the random-number table (Table 4 in the Appendix).

6.2 Count the number of people assigned to each treat-
ment group. How does this number compare with the
expected number in each group?

6.3 Suppose we change our minds and decide to enroll
40 patients and use 4 treatment groups. Start at the 12th
row of Table 4 and construct the list of random-treatment
assignments referred to in Problem 6.1.

6.4 Answer Problem 6.2 for the list of treatment assign-
ments derived in Problem 6.3,

Pulmonary Disease

The data in Table 6.8 concern the mean triceps skin-fold
thickness in a group of normal men and a group of men
with chronic airflow limitation [5].

TABLE 6.8 Triceps skin-fola thickness in normal men
and men with chronic airflow limitatior

Group Mean sd n
Normal 1.35 0.5 40
Chronic airflow limitation 0.92 0.4 32

Source: Reprinted with permission of Chest, 85(6), 585-595,
1984.

* 6.5 What is the standard error of the mean for each group?

6.6 Assume that the central-limit theorem is applicable.
What does it mean in this context?

Cardiology

The data in Table 6.9 on left ventricular ejection fraction
(LVEF) were collected from a group of 27 patients with
acute dilated cardiomyopathy [6].

6.7 Calculate the standard deviation of LVEF for these
patients.
6.8 Calculate the standard error of the mean for LVEF.

6.9 Using the computer, draw 50 subsamples of size 10
from the sample of 27 subjects and calculate the sample

TABLE 6.9 L=t ventrcular cjection fraoction {LVEF) for 27
pctients wh acute dilcted cardiomycoay

Patient Patient

number LVEF number LVEF
1 0.19 15 0.24
2 0.24 16 0.18
3 0.17 17 0.22
4 0.40 18 0.23
5 0.40 19 0.14
6 0.23 20 0.14
7 0.20 21 0.30
8 0.20 22 0.07
9 0.30 23 0.12

10 0.19 24 0.13

11 0.24 25 0.17

12 0.32 26 0.24

13 0.32 27 0.19

14 0.28

________________________ A

Note: 2 x; = 6.05, 2 x} = 1.522.
Source: Reprinted with permission of the New England Journal
of Medicine, 312(14), 885-890, 1985.

mean for each subsample. Do you think that the distri-
bution of sample means is normally distributed? Is the
central-limit theorem applicable to samples of size 10?

6.10 Find the upper 1st percentile of a ¢ distribution with
16 df.
6.11 Find the lower 10th percentile of a ¢ distribution with
28 df.

6.12 Find the upper 2.5th percentile of a ¢ distribution
with 7 df.

6.13 Assuming that the standard deviation is known to be
6.0, compute a 95% confidence interval for the mean
duration of hospitalization using the data in Table 2.11.

6.14 Compute a 95% confidence interval for the mean
duration of hospitalization without assuming that the
standard deviation is known.

6.15 Answer Problem 6. 14 for a 90% confidence interval.

6.16 What is the rclationship between your answers to
Problems 6.14 and 6.15?

6.17 What are the approximate upper and lower 2.5th
percentiles for a chi-square distribution with 2 df? What
notation is uscd to denote these percentiles?
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Refer to the data in Table 2.11. Regard this hospital as *6.25 Answer Problem 6.24 if each laboratory uses a com-

typical of Pennsylvania hospitals. mon medium to perform the susceptibility tests.

*6.18 What is the best point estimate of the percentage of *6.26 Provide a point and interval estimate (95% confi-
males among patients discharged from Pennsylvania dence interval) for the interlaboratory standard deviation
hospitals? of mean zone diameters for each type of control strain, if

* 6.49 What is the standard error of the estimate obtained each laboratory uses different media to perform the sus-

in Problem 6.187 ceptibility tests.
*6.27 Answer Problem 6.26 if each laboratory uses a com-

*6.20 Provide a 95% confidence interval for the percentage > i
mon medium to perform the susceptibility tests.

of males among paticnts discharged from Pennsylvania
hospitals. 6.28 Arc there any advantages to using a common
medium versus using different media for performing the
susceptibility tests with regards to standardization of re-
sults across laboratories?

6.24 What is the best point estimate of the percentage of
discharged patients, exclusive of women of childbearing
age (ages 18—45), who received a bacterial culture while

in the hospital? Renal Disease
6.22 Provide a 95% confidence interval corresponding to A study of psychological and physiological changes in a
the estimate in Problem 6.21. cohort of dialysis patients with end-stage renal disease was

conducted [8]. 102 patients were initially ascertained at
baseline; 69 of the 102 patients were reascertained at an
Microbiology 18-month follow-up visit. The data in Table 6.11 were
A nine-laboratory cooperative study was performed to reported.

evaluate quality control for susceptibility tests with 30 ug
netilmicin disks [7]). Each laboratory tested 3 standard
control strains on a different lot of Mueller-Hinton agar,
with 150 tests performed per laboratory. For protocol con-
trol, each laboratory also performed 15 additional tests on
each of the control strains using the same lot of Mueller-
Hinton agar across laboratories. The mean zone diameters Hypertension
for each of the nine laboratories are given in Table 6.10.

6.23 Answer Problem 6.22 for a 99% confidence interval.

6.29 Provide a point and interval estimate (95% confi-
dence interval) for the mean of each of the parameters at
baseline and follow-up.

6.30 Do you have any opinion on the physiological and
psychological changes in this group of patients?

In an effort to detect hypertension in young children,

*6.24 Provide a point and interval estimate (95% confi- blood-pressure measurements were taken on 30 children
dence interval) for the mean zone diameter across labo- aged 5-6 years living in a specific community. For these
ratories for each type of control strain, if each laboratory children the mean diastolic blood pressure was found to
uses different media to perform the susceptibility tests. be 56.2 mm Hg with standard deviation 7.9 mm Hg. From

TABLE 6.10 Ncor zone diamerers with 30 ug nerimcin dsks tested in nine separare laboratories

Type of control strain

E. coli S. aureus P. aeruginosa

Different Cerrmen Drferert Corrrmon Different Common
Laboratory meda medium media medium meca medium
A 27.5 23.8 25.4 23.9 20.1 16.7
B 24.6 21.1 24.8 24.2 18.4 17.0
C 25.3 25.4 24.6 25.0 16.8 17.1
D 28.7 25.4 29.8 26.7 21.7 18.2
E 23.0 24.8 27.5 25.3 20.1 16.7
F 26.8 25.7 28.1 25.2 20.3 19.2
G 24.7 26.8 31.2 27.1 22.8 18.8
H 24.3 26.2 24.3 26.5 19.9 18.1
|

249 26.3 25.4 25.1 19.3 19.2
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TABLE 6.11 Psychological and physiological parameters in patients with end-stage rencl disease

18-month follow-up

Baseline (n = 102) (n=69)

Variable Mean sd Mean sd

Serum creatinine (mmol/L) 0.97 0.22 1.00 0.19

Serum potassium (mmol/L) 443 0.64 4.49 0.71

Serum phosphate (mmoil/L) 1.68 0.47 1.57 0.40

Psychological adjustment 36.50 16.08 23.27 13.79

to iliness scale (PAIS scale)
a nationwide study, we know that the mean diastolic blood causing liver enlargement. We find that out of 40 guinea
pressure is 64.2 mm Hg for 5-6-year-old children. pigs, 15 actually have enlarged livers.
6.34 Is there evidence that the mean diastolic blood pres- 6.38 What is the best point estimate p of the probability
sure for the children in the community is different from of a guinea pig having an enlarged liver?
the nationwide average of children of the same age group? 6.39 What is a two-sided 95% confidence interval for p
6.32 Provide a 95% confidence interval for the standard assuming that the normal approximation is valid?
deviation of the diastolic blood pressure of 5-6-year-old 6.40 Answer Problem 6.39 if we do not assume that the
children in this community based on the observed 30 normal approximation is valid.
children.
Pharmacology

Ophthalmology, Hypertension Suppose we wish to estimate the concentration (ug/mL)
A special study is conducted to test the hypothesis that of a specific dose of ampicillin in the urine after various
people with glaucoma have higher blood pressure than periods of time. We recruit 25 volunteers and find that
average. In the study 200 people witt} glaucoma are they have a mean concentration of 7.0 ug/mL with a
recruited with a mean systolic blood pressure of 140 mm standard deviation of 2.0 ug/mL. Assume that the under-
Hg and a standard deviation of 25 mm Hg. lying population distribution of concentrations is normally
6.33 Construct a 95% confidence interval for the true distributed.
;Zigori:smhc blood pressure among  people  with *6.41 Find a 95% confidence interval for the population

mean concentration.
6.34 If the average systolic blood pressure for people of

comparable age is 130 mm Hg, then is there an association
between glaucoma and blood pressure?

*6.42 Find a 99% confidence interval for the population
variance of the concentrations.

*6.43 How large a sample would be needed to ensure that

Sexudlly Transmitted Disease the length of the confidence interval in Problem 6.41 is
Suppose a clinical trial is conducted to test the efficacy of 0.5 pg/mL if we assume that the sample standard devia-
a new drug, spectinomycin, in the treatment of gonorrhea tion remains at 2.0 ug/mL?

for females. Forty-six patients are given a 4-g daily dose

of the drug and are seen 1 week later, at which time 6 of Environmental Health

Much discussion has taken place concerning possible
health hazards from exposure to anesthetic gases. In one
study a group of 525 Michigan nurse anesthetists was
surveyed by mail questionnaires and telephone interviews

the patients still have gonorrhea.

* 6.35 What is the best point estimate for p, the probability
of a failure with the drug?

*6.36 What is a 95% confidence interval for p? in 1972 to determine the incidence rate of cancer [9]. Of
*6.37 Suppose we know that penicillin G at a daily dose this group, 7 women reported having a new malignancy
of 4.8 mega units has a 10% failure rate. What can be other than skin cancer during 1971.
said in comparing the two drugs? 6.44 What is the best estimate of the 1971 incidence rate
Hepatic Disease from these data?
Suppose we are experimenting with a group of guinea pigs 6.45 Provide a 95% confidence interval for the true inci-

and inoculate them with a fixed dose of a particular toxin dence rate.
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A comparison was made between the Michigan report and
the 1969 cancer-incidence rates from the Connecticut

tumor registry, where the expected incidence rate was
determined to be 402.8 per 100,000.

6.46 Comment on the comparison between the observed
incidence rate and the Connccticut tumor-registry data.

Obstetrics, Serology
A new assay is developed to obtain the concentration of
M. Hominis mycoplasma in the serum of pregnant women.
The developers of this assay wish to make a statement as
to the variability of their laboratory technique. For this
purposc, 10 subsamples of 1 ml each are drawn from a
large serum sample from one woman, and the assay is
performed on each subsamplc. The concentrations are
given as follows: 2%, 23, 25, 24, 25 2% 23 24 2% 25

* 6,47 If the concentration is assumed to be normal in the
log scale to the basc 2, then obtain the best estimate of
the variance of the method from these data.

* 6,48 Compute a 95% confidence interval for the variance
of the method.

*6.49 Assuming that the point estimate in Problem 6.47
is the true population parameter, what is the probability
that a particular assay, when expressed in the log scale to
the basc 2, is no more than 1.5 log units off from its true
value?

*6.50 Answer Problem 6.49 for 2.5 log units.

Hypertension

Suppose 100 hypertensive pecople are given an anti-
hypertensive drug and the drug is effective in 20 of the
people. By effective, we mean that their diastolic blood
pressure is lowered by at least 10 mm Hg as judged from
a repeat measurement 1 month after taking the drug.

6.51 What is the best point estimate of the probability p
of the drug being effective?

6.52 Suppose we know that 10% of all hypertensive
patients who are given a placebo will have their diastolic
blood pressure lowered by 10 mm Hg after 1 month. Can
we carry out some procedurc to be sure that we are not
simply observing the placebo effect?

6.53 What assumptions have you made to carry out the
procedure in Problem 6.527

Suppose we decide that a better measure of the effective-
ness of the drug is the mean decrease in blood pressure
rather than the measure of effectiveness used previously.
Letd, = x; —y;, i =1, ...,100, where x; = diastolic
blood pressure for the ith person before taking the drug
and y; = diastolic blood pressure for the ith person 1 month

after taking the drug. Suppose that the sample mean of
the d; is +5.3 and the sample variance is 144.0.

6.54 What is the standard error of d?

6.55 What is a 95% confidence interval for the population
mean of d?

6.56 Can we make a statement about the effectiveness of
the drug?

6.57 What does a 95% confidence interval mean, in
words, in this case?

Draw 6 random samples of size 5 from the data in
Table 6.2.

6.58 Compute the mean birthweight for each of the 6
samples.

6.59 Compute the standard deviation based on the sample
of 6 means. What is another name for this quantity?

6.60 Select the third point from each of the 6 samples,
and compute the sample standard deviation from this col-
lection of 6 third points.

6.61 What theoretical relationship should there be
between the standard deviation in Problem 6.59 and the
standard deviation in Problem 6.60?

6.62 How do the actual sample results in Problems 6.59
and 6.60 compare?

Obstetrics

In Figure 6.4(b) a plot of the sampling distribution of the
sample mean from 200 samples of size 5 from the pop-
ulation of 1000 birthweights given in Table 6.2 was pro-
vided. The mean of the 1000 birthweights in Table 6.2 is
112.0 oz with standard deviation 20.6 oz.

*6.63 If the central-limit theorem holds, then what pro-
portion of the sample means should fall within 0.5 1b of
the population mean (112.0 0z)?

*6.64 Answer Problem 6.63 for 1 1b rather than 0.5 1b.

*6.65 Compare your results in Problems 6.63 and 6.64
with the actual proportion of sample means that fall in
these ranges.

*6.66 Do you feel the central-limit theorem is applicable
for samples of size 5 from this population?

Hypertension, Pediatrics

The etiology of high blood pressure remains a subject of
active investigation. One widely accepted hypothesis is
that excessive sodium intake adversely affects blood-
pressure outcomes. To explore this hypothesis, an exper-
iment was set up to measure the responsiveness to the taste
of salt and to relate the responsiveness to blood-pressure



level. The protocol used involved testing 3-day-old infants
in the newborn nursery by giving them a drop of various
solutions and thus eliciting the sucking response and noting
the vigor with which they sucked—denoted by MSB =
mean number of sucks per burst of sucking. The content
of the solution was changed over 10 consecutive periods:
(1) water, (2) water, (3) 0.1 molar salt + water, (4) 0.1
molar salt + water, (5) water, (6) water, (7) 0.3 molar
salt + water, (8) 0.3 molar salt + water, (9) water, (10)
water. In addition, as a control, the response of the baby
to the taste of sugar was also measured after the salt-taste
protocol was completed. In this experiment, the sucking
response was measured over S different periods with the
following stimuli: (1) nonnutritive sucking, that is, a pure
sucking response was elucidated without using any exter-
nal substance; (2) water; (3) 5% sucrose + water; (4) 15%
sucrose + water; (5) nonnutritive sucking.

The data are given in Data Set INFANTBP.DAT, on the
data disk. The format of the data is given in Data Set
INFANTBP.DOC, on the data disk.

Construct a variable measuring the response to salt. For
example, one possibility is to compute the average MSB
for trials 3 and 4 — average MSB for trials 1 and 2 =
average MSB when the solution was 0.1 molar salt +
water — average MSB when the solution was water. A
similar index could be computed comparing trials 7 and
8 to trials 5 and 6.

6.67 Obtain descriptive statistics and graphical displays
for these salt-taste indices. Do the indices appear to be
normally distributed? Why or why not? Compute the sam-
ple mean for this index, and obtain 95% confidence limits
about the point estimate.

6.68 Construct an overall index relating MSB for the trials
when salt and water were sucked to MSB for the trials
with only a water solution. Answer Problem 6.67 for this
overall salt-taste index.

6.69 Construct indices measuring the responsiveness to
the sugar taste and provide descriptive statistics and graph-
ical displays for these indices. Do the indices appear to
be normally distributed? Why or why not? Compute the
sample mean and associated 95% confidence limits for
these indices.

6.70 We wish to relate the indices to blood-pressure level.
Provide a scatter plot relating mean systolic blood pressure
(SBP) and mean diastolic blood pressure (DBP), respec-
tively, to each of the salt-taste and sugar-taste indices.
Does there appear to be a relation between the indices and
blood-pressure level? We will discuss this in more detail
in our work on regression analysis in Chapter 11.
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Genetics

In Data Set SEXRAT.DAT, on the data disk, the sexes of
children born in over 50,000 families with more than one
child are listed.

6.71 Use interval-estimation methods to determine if the
sex of successive births is predictable from the sex of
previous births.

Nutrition

In Data Set VALID.DAT, on the data disk, estimated daily
consumption of total fat, saturated fat, and alcohol as well
as total caloric intake using two different methods of die-
tary assessment are provided for 173 subjects.

6.72 Use a computer to draw repeated samples of size 5
from this population. Does the central-limit theorem seem
to hold for these dietary attributes based on samples of
size 5? ’

6.73 Answer Problem 6.72 for samples of size 10.

6.74 Answer Problem 6.72 for samples of size 20.

6.75 How do the sampling distributions compare based
on samples of size 5, 10, and 20? Use graphic and numeric
methods to answer this question.

Infectious Disease

A cohort of hemophiliacs is followed to elicit information
on the distribution of time to onset of AIDS following
seroconversion (referred to as latency time). All patients
who seroconvert become symptomatic within 10 years,
according to the following distribution:

Latency time
(years)

Number of patients

SO XN DR WD~ O
N
@)

6.76 Assuming an underlying normal distribution, com-
pute 95% confidence intervals for the mean and variance
of the latency times.
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6.77 Still assuming normality, cstimate the probability p
that a patient’s latency time will be at least 8 years.

6.78 Now suppose we are unwilling to assume a normal
distribution for latency time. Reestimate the probability p
that a patient’s latency time will be at least 8 years and
provide a 95% confidence interval for p.

Environmental Health

We have previously described the Data Set LEAD.DAT
(which is on the data disk). Children were classified
according to blood-lead level in 1972 and 1973 by the
variable GROUP, where 1 = blood-lead level <
40 pg/100mL in both 1972 and 1973, 2 = blood-lead
level = 40 pg/100mL in 1973, 3 = blood-lead level =
40ug/100mL in 1972, but < 40ug/100mL in 1973.

6.79 Compute thc mean, standard deviation, standard
error, and 95% CI for the mean verbal 1Q for children
with specific values of the variable GROUP. Provide a
box plot comparing the distribution of verbal 1Q for sub-
jects with GROUP = 1, 2, and 3. Summarize your findings
concisely.

6.80 Answer Problem 6.79 for performance 1Q.
6.84 Answer Problem 6.79 for full-scale 1Q.

Cardiology
The Data Set NIFED.DAT (on the data disk) was described

References

earlier. We wish to look at the effect of each treatment
separately on heart rate and systolic blood pressure.
6.82 Provide a point estimate and a 95% CI for the
changes in heart rate and systolic blood pressure (level 1
to baseline), separately for the subjects randomized to
nifedipine and propranolol, respectively. Also provide box
plots of the change scores in the two treatment groups.

6.83 Answer Problem 6.82 for level 2 to baseline.

6.84 Answer Problem 6.82 for level 3 to baseline.

6.85 Answer Problem 6.82 for the last available level to
baseline.

6.86 Answer Problem 6.82 for the average heart rate (or
blood pressure) over all available levels to baseline.

Occupational Health

*6.87 Refer to Problem 4.23. Provide a 95% CI for the
expected number of deaths due to bladder cancer over 20
years among tire workers. Is there an excess number of
cases of bladder cancer in this group?

* 6.88 Refer to Problem 4.24. Provide a 95% CI for the
expected number of deaths due to stomach cancer over 20
years among tire workers. Is there an excess number of
cases of stomach cancer in this group?
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