
SECTION 3.1 Introduction

In Chapter 2 various techniques for concisely describing data were outlined. But we
usually want to do more with data than just describe them. In particular, we might
want to test certain specific inferences about the behavior of the data.

EXAMPLE 3.1 Cancer One theory concerning the etiology of breast cancer states that women in a given age
group who give birth to their first child relatively late in life (after 30) are at greater risk for
eventually developing breast cancer over some time period t than are women who give birth to
their first child early in life (before 20). Because women in the upper social classes tend to have
children later, this theory has been used to explain why these women have a higher risk of
developing breast cancer than women in the lower social classes. To test this hypothesis, we
might identify 2000 women from a particular census tract who are currently aged 45-54 and
have never had breast cancer, of whom 1000 had their first child before the age of 20 (call this
group A) and 1000 after the age of 30 (call this group B). These 2000 women might be followed
for 5 years and asked if they had a new case of breast cancer during this period. Suppose that
there are 4 new cases of breast cancer out of 1000 in group A and 5 new cases out of 1000 in
group B. • ••

Is this sufficient evidence to confirm a difference in risk between the two groups?
Most people would feel uneasy about coming to this conclusion on the basis of such
a limited amount of data.

Suppose we had a more ambitious plan and sampled 10,000 women from groups
A and B, respectively, and found 40 new cases in group A and 50 new cases in group
B and asked the same question. Although we might be more comfortable with the
conclusion because of the larger sample size, we would still have to admit that there
was some possibility that this apparent difference in the rates could be due to chance.

The problem is that we need a conceptual framework to make these decisions but
have not explicitly stated what the framework is. This framework is provided by the
underlying concept of probability. In this chapter probability is defined and some
rules for working with probabilities are introduced. Understanding of probability is
essential in the calculation and interpretation of p-values in the statistical tests of
subsequent chapters. It also permits a discussion of sensitivity, specificity, and pre­
dictive values of screening tests, which are discussed in Section 3.7.

SECTION 3.2 Definition of Probability

EXAMPLE 3.2 Obstetrics Suppose we are interested in the probability of a male live childbirth (or livebirth)
among all livebirths in the United States. Conventional wisdom tells us that this probability
should be close to .5. We can explore this subject by looking at some vital-statistics data, as
presented in Table 3.1 [1]. The probability of a male livebirth based on 1965 data is .51247,
based on 1965-1969 data .51248, and based on 1965-1974 data .51268. These are empirical
probabilities based on a finite amount of data. In principle, the sample size could be expanded
indefinitely and an increasingly more precise estimate of this probability obtained.
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44 CHAPTER 3 / PROBABILITY

TABLE 3.1
Probability of a mole

livebirth during the
period 1965-1974 Time period

1965
1965-1969
1965-1974

Number of
male livebirths

(a)

1,927,054
9,219,202

17,857,857

Total number of
. livebirths

(b)

3,760,358
17,989,361
34,832,051

Empirical
probability of a
male livebirth

(a/b)

0.51247
0.51248
0.51268

•••
This principle leads to the following definition of probability:

DERNRION 3~ •••••••••••••••••• --------_.-

The sample space is the set of all possible outcomes. In referring to probabilities of events, an
event is any set of outcomes of interest. The probability of an event is the relative frequency
(see p. 25) of this set of outcomes over an indefinitely large (or infinite) number of trials. •

EXAMPLE 3.3 Pulmonary Disease The tuberculin skin test is a routine screening test used to detect tuber­
culosis. The results of this test can be categorized as either positive, negative, or uncertain. If
the probability of a positive test is .1, it means that if a large number of such tests were
performed, about 10% of them would be positive. The actual percentage of positive tests will
be increasingly close to .1 the larger the number of tests performed. _

EXAMPLE 3,4 Cancer The probability of developing a new case of breast cancer in 30 years in 40-year-old
women who have never had breast cancer is approximately 1/11. This probability means that
over a large sample of 40-year-old women who have never had breast cancer, approximately 1
in 11 will develop the disease over 30 years, with this proportion becoming increasingly close
to 1 in 11 as the number of women sampled increases. _••

In real life, experiments cannot be performed an infinite number of times. Instead,
probabilities of events are estimated from the empirical probabilities obtained from
large samples (as was done in Examples 3.2-3.4). In other instances, theoretical
probability models are constructed from which probabilities of many different kinds
of events can be computed. One of the important issues in statistical inference is to
compare empirical probabilities with theoretical probabilities, that is, to assess the
goodness of fit of probability models. This topic is covered in Section 10.12.

EXAMPLE 3.5 Cancer The probability of developing a new case of stomach cancer over a l-year period for
45-49-year-old women based on Connecticut Tumor Registry data from 1963-1965 is 14 per
100,000 [2]. Suppose we have studied cancer rates in a small group of Connecticut nurses over
this period and wish to compare how close the rates from this limited sample are to the tumor­
registry figures. The figure 14 per 100,000 would be the best estimate of the probability prior
to collecting any data, and we would then see how closely our new sample data conformed
with this probability. _

From Definition 3.1 and from the preceding examples, we can deduce that prob­
abilities have the following basic properties:
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SOME USEFUL PROBABILISTIC NOTATION / SECTION 3.3 45

[!I (1) The probability of an event E, denoted by Pr(E), always satisfies 0 ~ Pr(E) ~ 1.

(2) If outcomes A and B are two events that cannot both happen at the same time, then
Pr(A or B occurs) = Pr(A) + Pr(B).

EXAMPLE 3.6 Hypertension Let A be the event that a person has normotensive diastolic blood-pressure
(DBP) readings (i.e., DBP <90), and let B be the event that a person has borderline DBP
readings (i.e., DBP ~90 and <95). Suppose that Pr(A) = .7, Pr(B) = .1. Let C be the event
that a person has DBP <95. Then,

Pr(C) = Pr(A) + Pr(B) = .8

because the events A and B cannot occur at the same time. •••
DEFINITION 3.2 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Two events A and B are mutually exclusive if they cannot both happen at the same time. _

Thus, the events A and B in Example 3.6 are mutually exclusive.

EXAMPLE 3.7 Hypertension Let x be DBP, C be the event that x ~ 90, and D be the event that 75 ~

x ~ 100. The events C and D are not mutually exclusive, since they both occur when 90 ~

x ~ 100. • ••

SECTION 3.3 Some Useful Probabilistic Notation

DEFINITION 3.3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The symbol { } is used as shorthand for the phrase "the event." •

DEFINITION 3.4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
A U B is the event that either A or B occurs or they both occur. •

Figure 3.1 diagrammatically depicts A U B both for the case where A and B are
and are not mutually exclusive.

EXAMPLE 3.8 Hypertension Let the events A and B be defined as in Example 3.6; that is, A = {x < 90},
B = {90 ~ x < 95}, where x = DBP. Then, A U B = {x < 95}. • ••

EXAMPLE 3.9 Hypertension Let the events C and D be defined as in Example 3.7; that is,

C = {x ~ 90} D = {75 ~ x ~ 100}

Then, {C U D} = {x ~ 75} •••
DEFINITION 3.5 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

{A n B} is the event that both A and B occur simultaneously. {A n B} is depicted diagrammatically
in Figure 3.2. •
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FIGURE 3.1
Diagrammatic

representation of
AU 8; (0) A, 8 mutually

exclusive; (b) A, 8 not
mutually exclusive

A

AU B shaded

(0)

A-.....

AU B shaded

(b)

FIGURE 3.2
Diagrammatic

representation of A n 8

A nB shaded

Then,

EXAMPLE 3,10 Hypertension Let the events C and D be defined as in Example 3.7; that is,

C = {x ~ 90} D = {75 ~ x ~ IOO}

{C n D} = {90 ~ x ~ IOO} •••

Notice that {A n B} is not well defined for the events A and B in Example 3.6, since
both A and B cannot occur simultaneously. This situation is true for any mutually
exclusive events.
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DERNnlON 16 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

A is the event that A does not occur. It is sometimes referred to as the complement of A. Notice
that Pr(A) = 1 - Pr(A), since A occurs only when A does not occur. The event A is depicted
diagrammatically in Figure 3.3. •

FIGURE 3.3
Diagrammatic

representation of A

EXAMPLE 3.11 Hypertension Let the events A and C be defined as in Examples 3.6 and 3.7; that is,

A = {x < 90} C = {x ~ 90}

Then, C = A, since C can only occur when A does not occur. Notice that

Pr(C) = Pr(A) = 1 - .7 = .3

Thus, if 70% of people have DBP <90, then 30% of people must have DBP ~90. • ••

SECTION 3.4 The MUltiplication Law of Probability

In the preceding section, events in general were described. In this section, certain
specific types of events are discussed.

EXAMPLE 3.12 Hypertension, Genetics Suppose we are conducting a hypertension-screening program in the
home. Consider all possible pairs of DBP measurements of the mother and father within a given
family, assuming that the mother and father are not genetically related. This sample space
consists of all pairs of numbers of the form (X, Y), where X > 0, Y > O. Certain specific events
might be of interest in this context. In particular, we might be interested in whether the mother
or father is hypertensive, which is described, respectively, by the events A = {mother's
DBP ~ 95}, B = {father's DBP ~ 95}. These events are depicted graphically in Figure 3.4.

Suppose we know that Pr(A) = .1, Pr(B) = .2. What can we say about Pr(A n B) =
Pr(mother's DBP ~ 95 and father's DBP ~ 95) = Pr(both mother and father are hypertensive)?
We can say nothing unless we are willing to make certain assumptions. • ••

DEFINITION 3.7 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
Two events A and B are referred to as independent events if

Pr(A n B) = Pr(A) x Pr(B) •
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FIGURE 3.4
Possible diastolic

blood-pressure
measurements of the

mother and father
within a given family

95 Mother's DBP

=event A ={mother's DBP ~ 95}

~ =event B ={father's DBP ~ 95}

~ = event A n B = {both DBP ~ 95}

EXAMPLE 3.13 Hypertension, Genetics Compute the probability that both the mother and father are hyper­
tensive if the events in Example 3.12 are independent.

SOLUTION If A and B are independent events, then

Pr(A n B) = Pr(A) x Pr(B) = .1(.2) = .02 •••

One way to interpret this example is to assume that the hypertensive status of the
mother does not depend at all on the hypertensive status of the father. Thus, if these
events are independent, then in 10% of all households where the father is hypertensive
the mother is also hypertensive, and in 10% of all households where the father is not
hypertensive the mother is hypertensive. We would expect these two events to be
independent if the primary determinants of elevated blood pressure were genetic.
However, if the primary determinants of elevated blood pressure were, to some extent,
environmental, then we would expect that the mother would be more likely to have
elevated blood pressure (A true) if the father had elevated blood pressure (B true) than
if the father did not have elevated blood pressure (B not true). In this latter case the
events would not be independent. The implications of this situation are discussed later
in this chapter.

If two events are not independent, then they are said to be dependent.
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DEFINITION 3.8 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
Two events A, B are dependent if

Pr(A n B) =1= Pr(A) x Pr(B)

Example 3.14 is a classic example of dependent events.
•

EXAMPLE 3.14 Hypertension, Genetics Consider all possible diastolic blood-pressure measurements from a
mother and her first-born child. Let

Pr(A n B) = .05 > Pr(A) x Pr(B) = .02

B = {first-born child's DBP ~ 80}

Suppose

Then

A = {mother's DBP ~ 95}

Pr(A n B) = .05 Pr(A) = .1 Pr(B) = .2

and the events A, B would be dependent. •••
This outcome would be expected, since the mother and first-born child both share

the same environment and are genetically related. In other words, the first-born child
is more likely to have elevated blood pressure in households where the mother is
hypertensive than in households where the mother is not hypertensive.

EXAMPLE 3.15 Sexually Transmitted Disease Suppose two doctors, A and B, diagnose all patients coming
into a VD clinic for syphilis. Let the events A + = {doctor A makes a positive diagnosis},
B+ = {doctor B makes a positive diagnosis}. Suppose that doctor A diagnoses 10% of all
patients as positive, doctor B diagnoses 17% of all patients as positive, and both doctors diagnose
8% of all patients as positive. Are the events A +, B+ independent?

SOLUTION We are given that

Thus, Pr(A+ n B+) = .08 > Pr(A+) X Pr(B+) = .1(.17) = .017

and the events are dependent. This result would be expected, since there should be a similarity
between how two doctors diagnose patients for syphilis. • ••

Definition 3.7 can be generalized to the case of k( >2) independent events. This is
often referred to as the multiplication law of probability.

If AI' ... ,Ak are mutually independent events, then Pr(AI n A2 n ... n Ak ) = Pr(AI)
x Pr(A2) x x Pr(Ak ) . This principle is referred to as the multiplication law of
probability.

SECTION 3.5 The Addition Law of Probability

We have seen from the definition of probability that if A and B are mutually exclusive
events, then Pr(A U B) = Pr(A) + Pr(B). A more general formula for Pr(A U B)
can be developed when the events A and B are not necessarily mutually exclusive.
This formula is referred to as the addition law of probability and is stated as follows:
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II! Addition Law of Probability

If A and B are any events, then

Pr(A U B) = Pr(A) + Pr(B) - Pr(A n B)

This principle is depicted diagrammatically in Figure 3.5. Thus, to compute Pr(A U B),
add the probabilities of A and B separately and then subtract the overlap, which is Pr(A n
B).

FIGURE 3.5
Diagrammatic

representation of the
addition law of

probability

AnB

- -
= AnB

To derive this result, note that the event A U B can be subdivided into three
mutually exclusive components, namely, A n B, A n B, A n B, that, in words, are

the events A occurs and B does not occur, A does not occur and B occurs, and both
A andB occur. IfA U B occurs, then exactly one of these events must occur. Therefore,

Pr(A U B) = Pr(A n B) + Pr(A n B) + Pr(A n B)

However, if A occurs, then it must occur either with B (A n B) or without B (A n B)

occurring. Therefore,

Pr(A) = Pr(A n B) + Pr(A n B)

If Pr(A n B) is subtracted from both sides of the equation,

Pr(A n B) = Pr(A) - Pr(A n B)

Similarly, if the roles of A and B are interchanged,

Pr(A n B) = Pr(B) - Pr(A n B)

Finally, by substituting into the expression for Pr(A U B),

Pr(A U B) = Pr(A) - Pr(A n B) + [Pr(B) - Pr(A n B)] + Pr(A n B)

= Pr(A) + Pr(B) - Pr(A n B)
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EXAMPLE 3.16 Sexually Transmitted Disease Consider the data given in Example 3.15. Suppose a patient
is referred for further lab tests if either doctor A or B makes a positive diagnosis. What is the
probability that a patient will be referred for further lab tests?

SOLUTION The event that either doctor makes a positive diagnosis can be represented by {A+ U B+}. We
know that

Pr(A+ n B+) = .08

Therefore, from the addition law of probability,

Thus, 19% of all patients will be referred for further lab tests. •••

There are special cases of the addition law that are of interest. First, if the events
A and B are mutually exclusive, then Pr(A n B) = 0 and the addition law reduces to
Pr(A U B) = Pr(A) + Pr(B). This property is given in (3.1) for probabilities over
any two mutually exclusive events. Second, if the events A and B are independent,
then by definition Pr(A n B) = Pr(A) x Pr(B) and Pr(A U B) can be rewritten as
Pr(A) + Pr(B) - Pr(A) X Pr(B). This leads to the following important special case
of the addition law.

~ Addition Law of Probability for Independent Events

If two events A and B are independent, then

Pr(A U B) = Pr(A) + Pr(B) X [1 - Pr(A)]

This special case of the addition law can be interpreted as follows: The event
A U B can be separated into two mutually exclusive events: {A occurs} and {B occurs
and A does not occur}. Furthermore, because of the independence of A and B, the
probability of the latter event can be written as Pr(B) x [1 - Pr(A)]. This probability
is depicted diagrammatically in Figure 3.6.

EXAMPLE 3.17 Hypertension Refer to Example 3.12, where

A = {mother's DBP ~ 95} and B = {father's DBP ~ 95}

Pr(A) = .1, Pr(B) = .2, and assume that A and B are independent events. Suppose a "hyper­
tensive household" is defined as one in which either the mother or the father is hypertensive,
and hypertension is defined for the mother and father, respectively, in terms of the events A
and B. What is the probability of a hypertensive household?

SOLUTION Pr(hypertensive household) is

Pr(A U B) = Pr(A) + Pr(B) X [1 - Pr(A)] = .1 + .2(.9) = .28

Thus, 28% of all households will be hypertensive. •••
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FIGURE 3.6
Diagrammatic

representation of the
addition law of

probability for
independent events

=A

= {B occurs and A does not occur} = B n A

It is possible to extend the addition law to more than two events. In particular,
if there are three events A, B, and C, then

Pr(A U B U C) = Pr(A) + Pr(B) + Pr(C) - Pr(A n B) - Pr(A n C)

- Pr(B n C) + Pr(A n B n C)

This result can be generalized to an arbitrary number of events, although this is beyond
the scope of this text (see [3]).

SECTION 3.6 Conditional Probability

Suppose we want to compute the probability of several events occurring simultaneously.
If the events are independent, then the multiplication law of probability can be used
to accomplish this. If some of the events are dependent, then some quantitative measure
of dependence is needed in order to extend the multiplication law to the case of
dependent events. Consider the following example:

EXAMPLE 3.18 Pulmonary Disease In many places of employment, prospective employees are customarily
given a screening test for tuberculosis (TB) before starting employment. The definitive test for
the detection of TB is the chest X-ray. Unfortunately, the chest X-ray is somewhat expensive
to administer and exposure to the radiation from the X-ray is an undesirable side effect of the
test. A common procedure to avoid giving everyone a chest X-ray is to perform a less expensive
test, the skin test, with the hope that only people who are positive on the skin test can possibly
have TB. The ideal situation would be if the probability of having TB among all those with
positive skin tests (SKT) were 1 and the probability of having TB among all those with negative
skin tests were O. The two events {SKT+}, {TB} would then be completely dependent; that is,
the result of the screening test would automatically determine the disease state. The opposite
extreme is achieved when the events {SKT+}, {TB} are completely independent. In this case
the probability of TB is the same whether or not the skin test is positive, and the skin test would
not be useful in screening for TB and should not be given. • ••
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These concepts can be quantified in the following way. Let A = {SKT+}, B =
{TB} and suppose that we are interested in the probability of TB (B) given that the
skin test is positive (A). This probability can be written as Pr(A n B)/Pr(A).

DEFINITION 3.9 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The quantity Pr(A n B)/Pr(A) is defined as the conditional probability of B given A, which
is written as Pr(B !A). •

However, from Section 3.4 we know that, by definition, if two events are inde­
pendent, then Pr(A n B) = Pr(A) x Pr(B). If both sides are divided by Pr(A), then
Pr(B) = Pr(A n B)/Pr(A) = Pr(B IA). Similarly, we can show that if A and B are
independent events, then Pr(B lif) = Pr(B IA) = Pr(B). This relationship leads to
the following alternative interpretation of independence in terms of conditional
probabilities:

~ (1) If A and B are independent events, then Pr(BIA) = Pr(B) = Pr(BIA).

(2) If two events A, B are dependent, then Pr(B IA) =1= Pr(B) =1= Pr(B IA) and Pr(A n B) =1=

Pr(A) x Pr(B).

DERNRION 3~O ••••••••••••••••••• • • •• • __• _

The relative risk (RR) of B given A is

Pr(B !A)/Pr(B IA) •
Notice that if two events A, B are independent, then the relative risk will be 1.

If two events A, B are dependent, then the relative risk will be different from 1.
Heuristically, the more the dependence between events increases, the further the relative
risk is from 1.

EXAMPLE 3.19 Pulmonary Disease Suppose that 1 person in 10,000 from those with negative skin tests has
TB, or Pr(BIA) = .0001, whereas 1 person in 100 from those with positive skin tests has TB,

or Pr(B IA) = .01. The two events would be highly dependent here, since

RR = Pr(BIA)/Pr(BIA) = .01/.0001 = 100

In words, people with positive skin tests are 100 times as likely to have TB as those with
negative skin tests. This is the rationale for using the skin test as a screening test for TB. If
the events A and B were independent, then the relative risk would be I; that is, people with
positive or negative skin tests would be equally likely to have TB and the test would not be
useful as a screening test. _

EXAMPLE 3.20 Sexually Transmitted Disease Using the data in Example 3.15, find the conditional proba­
bility that doctor B makes a positive diagnosis of syphilis given that doctor A makes a positive
diagnosis. What is the conditional probability that doctor B makes a positive diagnosis of syphilis
given that doctor A makes a negative diagnosis? What is the relative risk of {B+} given {A+}?
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SOLUTION

Thus, doctor B will confirm doctor A's positive diagnosis 80% of the time. Similarly,

We must compute Pr(B+ n A -). We know that if doctor B diagnoses a patient as positive, then
doctor A either does or does not diagnose the patient as positive. Thus,

since the events {B+ n A+} and {B+ n A-} are mutually exclusive. If we subtract
Pr(B+ n A+) from both sides of the equation, then

Therefore,

Pr(B+ n A-) = Pr(B+) - Pr(B+ n A+) = .17 - .08 = .09

Pr(B+IA-) = .09/.9 = .1

Thus, when doctor A diagnoses a patient as negative, doctor B will contradict the diagnosis
10% of the time. The relative risk of the event {B+} given {A+} is

This indicates that doctor B is 8 times as likely to diagnose a patient as positive when doctor
A diagnoses the patient as positive than when doctor A diagnoses the patient as negative. These
results quantify the dependence between the two doctors' diagnoses. • ••

The conditional (Pr(B IA), Pr(B IA)) and unconditional (Pr(B)) probabilities men­

tioned previously can be related in the following way:

~ For any events A and B,

Pr(B) = Pr(B IA) x Pr(A) + Pr(B Iff) x Pr(ff)

This formula tells us that the unconditional probability of B is the sum of the
conditional probability of B given A times the unconditional probability of A plus the
conditional probability of B given A not occurring times the unconditional probability
of A not occurring.

To derive this, we note that if the event B occurs, it must occur either with A or
without A. Therefore,

Pr(B) = Pr(B n A) + Pr(B n A)

From the definition of conditional probability, we see that

Pr(B n A) = Pr(A) x Pr(B IA)

and

Pr(B n A) = Pr(A) x Pr(B IA)

By substitution, it follows that

Pr(B) = Pr(B IA)Pr(A) + Pr(B IA)Pr(A)
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EXAMPLE 3.21 Pulmonary Disease Let A and B be defined as in Example 3.19 and suppose that 1% of the
general population will have a positive skin test. What is the probability of tuberculosis in the
general population?

SOLUTION Pr(B) = Pr(TB) = Pr(TB ISKT+) x Pr(SKT+) + Pr(TB ISKT-) x Pr(SKT-)

= .01(.01) + 10- 4(.99) = .000199 = .0002 = 2 x 10-4

Thus, the unconditional probability of TB in the general population (2 x 10- 4) is a weighted
average of the conditional probability of TB given a positive skin test (.01 = 100 x 10-4) and
the conditional probability of TB given a negative skin test (l0-4) . • ••

In (3.6) the probability of the event B is expressed in terms of the two events A
and II. In many instances the probability of an event B will need to be expressed in

terms of more than two mutually exclusive events, denoted by AI> A2 , ••• ,Ak •

DERNnlON 3~1 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
A set of events AI' ... ,Ak is exhaustive if at least one of the events must occur. _

Assume that the events AI' . . . ,Ak are mutually exclusive and exhaustive, that
is, at least one of the events AI> ... , Ak must occur and no two events can occur
simultaneously. Thus, exactly one of the events AI> ... ,Ak must occur.

~ Total Probability Rule

Let AI' ... ,Ak be mutually exclusive and exhaustive events. The unconditional probability
of B (Pr(B)) can then be written as a weighted average of the conditional probabilities of B
given Aj (Pr(B IAJ) as follows:

k

Pr(B) = 2: Pr(BIAJ x Pr(A j )
j=I

To show this, we note that if B occurs, then it must occur together with one and only
one of the events, AI> ... ,Ak • Therefore,

k

Pr(B) = 2: Pr(B n Ai)
i=l

Also, from the definition of conditional probability,

Pr(B n Ai) = Pr(Ai) x Pr(B IAi)

By substitution, we obtain Equation (3.7).
An application of the total probability rule is given in the following example:

EXAMPLE 3.22 Ophthalmology We are planning a 5-year study of cataract in a population of 5000 people
60 years of age and older. We know from census data that 45% of this population are ages
60-64, 28% are ages 65-69, 20% are ages 70-74, and 7% are age 75 or older. We also know
from the Framingham Eye Study that 2.4%, 4.6%, 8.8%, and 15.3% of the people in those
respective age groups will develop cataract over the next 5 years [4]. What percentage of our
population will develop cateract over the next 5 years, and how many cataracts does this
percentage represent?
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56 CHAPTER 3 / PROBABILITY

SOLUTION LetAI = {ages 60-64}, A2 = {ages 65-69}, A3 = {ages 70-74}, A4 = {age 75+}. These events
are mutually exclusive and exhaustive, since exactly one event must occur for each person in
our population. Furthermore, from the conditions of the problem, we know that Pr(AI) = .45,
Pr(A2) = .28, Pr(A3) = .20, Pr(A4) = .07, Pr(B IAI ) = .024, Pr(B IA2) = .046, Pr(B IA3) =
.088, and Pr(BIA4) = .153. Finally, using the total probability rule,

Pr(B) = Pr(B IAI ) x Pr(AI) + Pr(B IA2 ) x Pr(A2)

+ Pr(BIA3) X Pr(A3) + Pr(BIA4) X Pr(A4)

= .024(.45) + .046(.28) + .088(.20) + .153(.07) = .052

Thus 5.2% of our population will develop cataract over the next 5 years, which represents a
total of 5000 x .052 = 260 persons with cataract. • ••

The definition of conditional probability allows the multiplication law of proba­
bility to be extended to the case of dependent events.

~ Generalized Multiplication Law of Probability

If AI' ... ,Ak are an arbitrary set of events, then

Pr(AI n A2 n ... n Ak)
= Pr(AI) x Pr(A2IA I) x Pr(A3IA2 n AI) x .... x Pr(AkIAk- 1 n ... n A2 n AI)

If the events are independent, then the conditional probabilities on the right-hand
side of (3.8) reduce to unconditional probabilities, and the generalized multiplication
law reduces to the multiplication law for independent events given in (3.2). Equation
(3.8) also generalizes the relationship Pr(A nB) = Pr(A) x Pr(B IA) given in
Definition 3.9 for two events to the case of more than two events.

SECTION 3.7 Bayes' Rule and Screening Tests

The tuberculosis skin-test example given in Example 3.18 illustrates the general concept
of the predictive value of a screening test, which can be defined as follows:

DEFINITION 3.12 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The predictive value positive (PY+) of a screening test is the probability that a person has
disease given that the test is positive

Pr(disease Itest +)

The predictive value negative (PY-) of a screening test is the probability that a person does
not have disease given that the test is negative

Pr(no disease Itesr) •
EXAMPLE 3.23 Pulmonary Disease Find the predictive values positive and negative for the tuberculosis skin

test given the data in Example 3.19.
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SOLUTION We see that

whereas

BAYES' RULE AND SCREENING TESTS / SECTION 3.7 57

Pv" = Pr(B IA) = .01

py- = Pr(l1IA) = 1 - Pr(BIA) = .9999

Thus, if the skin test is negative, the person is virtually certain not to have disease (pY- = 1);
whereas if the skin test is positive, the person still has only a small chance of having disease
(PY+ = .01). • ••

A symptom or a set of symptoms can also be regarded as a screening test for
disease. The higher the predictive value of the screening test or symptoms, the more
valuable the test. Ideally, we would like to find a set of symptoms such that both PV+
and PV- are 1. Then we would be able to accurately diagnose disease for each patient.

Clinicians often cannot directly measure the predictive value of a set of symptoms.
However, they can measure how often specific symptoms occur in diseased and normal
people. These measures are defined as follows:

DERNRION 3A3 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The sensitivity of a symptom (or set of symptoms or screening test) is the probability that the
symptom is present given that the person has disease. _

DERNRION 3A4 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
The specificity of a symptom (or set of symptoms or screening test) is the probability that the
symptom is not present given that the person does not have disease. _

DERNRION 3A5 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
A false negative is defined as a person who tests out as negative but who is actually positive.
A false positive is defined as a person who tests out as positive but who is actually negative.

-
It is important that both the sensitivity and specificity be high for a symptom to

be effective in predicting disease.

EXAMPLE 3.24 Cancer Suppose that the disease is lung cancer and the symptom is cigarette smoking. If we
assume that 90% of people with lung cancer and 50% of people without lung cancer (essentially
the entire general population) are smokers, then the sensitivity and specificity are .9 and .5,
respectively. Obviously cigarette smoking cannot be used by itself as a diagnostic tool for
predicting lung cancer, because there will be too many false positives (normal people who are
smokers). • ••

EXAMPLE 3.25 Cancer Suppose that the disease is breast cancer in women and the symptom is having a
family history of breast cancer (i.e, either a mother or a sister with breast cancer). If we assume
that 5% of women with breast cancer have a family history of breast cancer whereas only 2%
of women without breast cancer have such a history, then the sensitivity is .05 and the specificity
is .98 = (1 - .02). A family history of breast cancer cannot be used by itself to diagnose breast
cancer because there will be too many false negatives (i.e., women without a family history
who have the disease). • ••

How can the sensitivity and specificity of a symptom (or set of symptoms), which
are quantities a physician can estimate, be used to compute predictive values, which
are quantities a physician needs to make appropriate diagnoses?
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58 CHAPTER 3 I PROBABILITY

Let A = symptom and B = disease. From Definitions 3.12, 3.13, and 3.14, we
have

Predictive value positive = PV+ = Pr(B IA)

Predictive value negative = PV- = Prell IA)

Sensitivity = Pr(A IB)

Specificity = Pr(A IB)

Let Pr(B) = probability of disease in the reference population. We wish to compute
Pr(B IA) and Prell IA) in terms of the other quantities. This relationship is known as

Bayes' rule.

3.9 Bayes'Rule

Let A = symptom and B = disease.

+ _ _ Pr(AIB) x Pr(B)
PV - Pr(BIA) - Pr(AIB) x Pr(B) + Pr(AIB) x Pr(B)

In words, this can be written as

+ _ x x sensitivity
PV - x x sensitivity + (l - x) X (l - specificity)

where x = Pr(B) = prevalence of disease in the reference population. Similarly

_ (l - x) X specificity
PV = (l - x) x specificity + x x (l - sensitivity)

To derive this, we have from the definition of conditional probability,

PV+ = P (BIA) = Pr(B n A)
r Pr(A)

Also, from the definition of conditional probability,

Pr(B n A) = Pr(AIB) x Pr(B)

Finally, from the total probability rule,

Pr(A) = Pr(A IB) x Pr(B) + Pr(A IB) x Pr(B)

If the expressions for Pr(B n A) and Pr(A) are substituted into the equation for PV+,
we obtain

+ _ _ Pr(AIB) x Pr(B)
PV - Pr(BIA) - Pr(AIB) x Pr(B) + Pr(AIB) x Pr(B)

That is, PV+ can be expressed as a function of sensitivity, specificity, and probability
of disease in the reference population. A similar derivation can be used for PV-.
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EXAMPLE 3.26 Hypertension Suppose that 84%of hypertensives and 23% of nonnotensives are classifiedas
hypertensive by an automated blood-pressure machine. What is the predictive value positive
and predictive value negative of the machine, assuming that 20% of the adult population is
hypertensive?

SOLUTION The sensitivity = .84 and specificity = 1 - .23 = .77. Thus, from Bayes' rule it follows that

py+ = .2(.84)/[.2(.84) + .8(.23)]

= .168/.352 = .48

py- = .8(.77)/[.8(.77) + .2(.16)]

= .616/.648 = .95

Thus, a negative result from the machine is very predictive, since we are 95% sure that such
a person is normotensive. However, a positive result is not very predictive, since we are only
48% sure that such a person is hypertensive. • ••

In Example 3.26 there were only two possible disease states: hypertensive and
normotensive. In clinical medicine there are often more than two possible disease
states. We would like to be able to predict the most likely disease state given a specific
symptom (or set of symptoms). We will assume that the probability of having these
symptoms for each disease state is known from clinical experience, as is the probability
of each of the disease states in the reference population. This leads us to the generalized
Bayes' rule:

~ Generalized Bayes' Rule

Let B1, B2 , ••• , Bk be a set of mutually exclusive and exhaustive disease states, that is, at
least one disease state must occur and no two disease states can occur at the same time. Let
A represent the presence of a symptomor set of symptoms. Then

This result is obtained in a similar manner to that of Bayes' rule for two disease states
in (3.9). Specifically, from the definition of conditional probability, note that

P (B.IA) = Pr(B; n A)
r I Pr(A)

Also, from the definition of conditional probability,

Pr(B; n A) = Pr(A IB;) X Pr(B;)

From the total probability rule,

Pr(A) = Pr(AIB1) x Pr(B1) + ... + Pr(AIBk ) x Pr(Bk)

If the expressions for Pr(B; n A) and Pr(A) are substituted we obtain

Pr(B;IA) = {r(AIB;) x Pr(B;)
Lj=l Pr(A IBj ) x Pr(Bj )
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60 CHAPTER 3 I PROBABILITY

EXAMPLE 3.27 Pulmonary Disease Suppose that a 60-year-old male who has never smoked cigarettes presents
with symptoms consisting of a chronic cough and occasional breathlessness to a physician. The
physician becomes concerned and orders the patient admitted to the hospital for a lung biopsy.
Suppose that the results of the lung biopsy are consistent with either lung cancer or sarcoidosis,
a fairly common, nonfatal lung disease. In this case

Symptoms A = {chronic cough, results of lung biopsy}

Disease state B I = normal

B2 = lung cancer

B3 = sarcoidosis

Suppose that

and that in 60-year-old, never-smoking males

The first set of probabilities Pr(A IBi) could be obtained from clinical experience with the
previous diseases, whereas the latter set of probabilities Pr(BJ would have to be obtained from
age-sex-smoking specific prevalence rates for the diseases in question. The interesting question
now is what are the probabilities Pr(BiIA) of the three disease states given the previous
symptoms?

SOLUTION Bayes' rule can be used to answer this question. Specifically,

Pr(BIIA) = Pr(A IBI) x Pr(BI)/L~ Pr(A IBj ) x pr(Bj ) ]

= .001(.99)/[.001(.99) + .9(.001) + .9(.009)]

= .00099/.00999 = .099

Pr(B2IA) = .9(.001)/[.001(.99) + .9(.001) + .9(.009)]

= .00090/.00999 = .090

Pr(B3IA) = .9(.009)/[.001(.99) + .9(.001) + .9(.009)]

= .00810/.00999 = .811

Thus, although the unconditional probability of sarcoidosis is very low (.009), the conditional
probability of the disease given these symptoms and this age-sex-smoking group is .811. Also,
although the symptoms are consistent with both lung cancer and sarcoidosis, the latter is much
more likely among patients in this age-sex-smoking group. • ••

EXAMPLE 3.28 Pulmonary Disease Now, suppose that the patient in Example 3.27 was a smoker of two
packs of cigarettes per day for 40 years. Then, assume that Pr(BI) = .98, Pr(B2) = .015,
Pr(B3) = .005 in this type of person. What are the probabilities of the three disease states given
these symptoms for this type of patient?

SOLUTION Pr(BIIA) = .001(.98)/[.001(.98) + .9(.015) + .9(.005)]

= .00098/.01898 = .052
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Pr(B2 IA) = .9(.015)/.01898 = .01350/.01898 = .711

Pr(B3 IA) = .9(.005)/.01898 = .237

Thus, in this type of patient, lung cancer is the most likely diagnosis.

SECTION 3.8 Prevalence and Incidence

•••

In clinical medicine, the terms prevalence and incidence are used to denote probabilities
in a special context and are used frequently in this text.

DEFINITION 3.16 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The prevalence of a disease is the probability of currently having that disease regardless of the
duration of time one has had the disease. It is obtained by dividing the number of people who
currently have the disease by the number of people in the study population. •

EXAMPLE 3.29 Hypertension The prevalence of hypertension in 1974 among all people 17 years of age and
older was reported to be 15.7% as assessed by a government study [5]. It was computed by
dividing the number of people who had elevated blood pressure and were 17 years of age and
older (22,626) by the total number of people 17 years of age and older in the study population
(144,380). • ••

DERNnlON 3~7 •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

The cumulative incidence of a disease is the probability that an individual with no prior disease
will develop a new case of the disease over some specified time period. _

In Chapter 13 we will distinguish between cumulative incidence, which is defined
over a long period of time, and incidence density, which is defined over a very short
(or instantaneous) period of time. For simplicity, prior to Chapter 13 the abbreviated
term incidence will be used to denote cumulative incidence.

EXAMPLE 3,30 Cancer The annual incidence rate of breast cancer in 40-44-year-old Connecticut women over
the time period January 1, 1970, through December 31, 1970, was approximately 1 per 1000
[2]. This rate means that about 1 woman in 1000 of the 40-44-year-old women who had never
had breast cancer on January 1, 1970, would have developed a new case of breast cancer by
December 31, 1970. • ••

SECTION 3.9 Summary

In this chapter, probabilities and how to work with them using the addition and
multiplication laws were discussed. An important distinction was made between inde­
pendent events, which are unrelated to each other, and dependent events, which tend
to occur simultaneously. The general concepts of conditional probability and relative
risk were introduced to quantify the dependence between two events. These ideas were
then applied to the special area of screening populations for disease. In particular, the
notions of sensitivity, specificity, and predictive value, which are used to define the
accuracy of screening tests, were developed as applications of conditional probability.
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62 CHAPTER 3 / PROBABILITY

On some occasions, only sensitivities and specificities are available and we wish to
compute the predictive value of screening tests. This task can be accomplished using
Bayes' rule. Indeed, Bayes' rule can be used generally to change the direction of
conditional probabilities. Finally, prevalence and incidence, which are probabilistic
parameters that are often used to describe the magnitude of disease in a population,
were defined.

In the next two chapters, these general principles of probability are applied to
derive some of the important probabilistic models often used in biomedical research,
including the binomial, Poisson, and normal models. These models will be used
eventually to test hypotheses about data.

PROBLEMS

Consider a family with a mother, father, and two children.
Let Al = {mother has influenza}, Az = {father has influ­
enza}, A3 = {first child has influenza},A4 = {second child
has influenza}, B = {at least one child has influenza},
C = {at least one parent has influenza}, D = {at least
one person in the family has influenza}.

*3.1 What does Al U Az mean?

* 3.2 What does A I n Az mean?

* 3.3 Are A3 and A4 mutually exclusive?

* 3.4 What does A3U B mean?

* 3.5 What does A3 n B mean?

* 3.6 Express C in terms of AI> Az, A3 , A4 •

* 3.7 Express D in terms of Band C.

* 3.8 What does AI mean?

* 3.9 What does Az mean?

* 3.10 Represent C in terms of AI' Az, A3 , A4 .

* 3.11 Represent D in terms of Band C.

Suppose that an influenza epidemic strikes a city. In 10%
of families the mother has influenza; in 10% of families
the father has influenza; and in 2% of families both the
mother and father have influenza.

3.12 Are the events AI' Az independent?

Suppose that there is a 20% chance that each child will
get influenza, whereas in 10% of two-child families, both
children get the disease.

3.13 What is the probability that at least one child will
get influenza?

Hypertension
Multiple drugs are often used in treating hypertension.
Suppose that 10% of patients taking antihypertensive agent

A experience gastrointestinal (GI) side effects, whereas
20% of patients taking antihypertensive agent B experience
such side effects.

3.14 If the side effects of the two agents are assumed to
be independent events, then what is the probability that a
patient taking the two agents simultaneously will experi­
ence GI side effects?

Refer to Problem 3.12.

3.15 What is the conditional probability that the father
has influenza given that the mother has influenza?

3.16 What is the conditional probability that the father
has influenza given that the mother does not have
influenza?

Mental Health
Estimates of the prevalence of Alzheimer's disease have
recently been provided by Pfeffer et al. [6]. The estimates
are given in Table 3.2.

TABLE 3.2 Prevalence of Alzheimer's
disease (cases per 100 population]

Age group Males Females

65-69 1.6 0.0
70-74 0.0 2.2
75-79 4.9 2.3
80-84 8.6 7.8
85+ 35.0 27.9

Suppose an unrelated 77-year-old man, 76-year-old
woman, and 82-year-old woman are selected from a
community.
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apercentage of total population.

TABLE 3.3 Age-sex
distribution of retirement
communi1y

3.17 What is the probability that all three of these indi­
viduals have Alzheimer's disease?

3.18 What is the probability that at least one of the women
has Alzheimer's disease?

3.19 What is the probability that at least one of the three
individuals has Alzheimer's disease?

3.20 What is the probability that exactly one of the three
individuals has Alzheimer's disease?

3.21 Suppose we know that one of the three individuals
has Alzheimer's disease, but we don't know which one.
What is the conditional probability that the affected indi­
vidual is a woman?

3.22 Suppose we know that two of the three individuals
have Alzheimer's disease. What is the conditional prob­
ability that they are both women?

3.23 Suppose we know that two of the three individuals
have Alzheimer's disease. What is the conditional prob­
ability that they are both less than 80 years old?

Suppose the probability that both members of a married
couple will have the disease, where each member is 75­
79 years old, is .0015.

3.24 What is the conditional probability that the man will
be affected given that the woman is affected? How does
this value compare to the prevalence in Table 3.2? Why
should it be the same (or different)?

3.25 What is the conditional probability that the woman
will be affected given that the man is affected? How does
this value compare to the prevalence in Table 3.2? Why
should it be the same (or different)?

3.26 What is the probability that at least one member of
the couple is affected?

Suppose a study of Alzheimer's disease is proposed in a
retirement communty with persons 65+ years of age,
where the age-sex distribution is as shown in Table 3.3.

Male Female
(%)a (%)

Genetics
Suppose that a disease is inherited via a dominant mode
of inheritance and that one of two parents is affected with
the disease whereas one is not. The implications of this
mode of inheritance are that the probability is ! that any
particular offspring will get the disease.

3.31 What is the probability that in a family with two
children, both siblings are affected?

3.32 What is the probability that exactly one sibling is
affected?

3.33 What is the probability that neither sibling will be
affected?

3.34 Suppose that the older child is affected. What is the
probability that the younger child will be affected?

3.35 IfA, B are two events such that A = {older child is
affected}, B = {younger child is affected}, then are the
events A, B independent?

Suppose that a disease is inherited via an autosomal reces­
sive mode of inheritance. The implications of this mode
of inheritance are that the children in a family each have
a probability of:i of inheriting the disease.

3.27 What is the expected overall prevalence of Alz­
heimer's disease in the community, if the prevalence esti­
mates in Table 3.2 for specific age-sex groups holds?

3.28 If there are 1000 persons 65+ years of age in the
community, then what is the expected number of cases of
Alzheimer's disease in the community?

Occupational Health
A study is conducted on male workers 50-69 years old
working in a chemical plant. We are interested in com­
paring the mortality experience of the workers in the plant
with national mortality rates. Suppose that of the 500
workers in this age group in the plant, 35% are 50-54,
30% are 55-59, 20% are 60-64, and 15% are 65-69.

* 3.29 If the annual national mortality rates are 0.9% in
50-54-year-old men, 1.4% in 55-59-year-old men, 2.2%
in 60-64-year-old men, and 3.3% in 65-69-year-old men,
then what is the projected annual mortality rate in the plant
as a whole?

The SMR (standardized mortality ratio) is often used in
occupational studies as a measure of risk. It is defined as
100% times the observed number of events in the exposed
group divided by the expected number of events in the
exposed group (based on some reference population).

* 3.30 If 15 deaths are observed over 1 year among the
500 workers, then what is the SMR?

10
17
18
12
6

5
9

11
8
4

65-69
70-74
75-79
80-84
85+
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TABLE 3.4 Distribution of length
of gestation

Suppose that infants are classified as low birthweight
if they have a birthweight ~2500 g and as normal birth­
weight if they have a birthweight ~2501 g. Suppose that
infants are also classified by length of gestation in the
following four categories: <20 weeks, 20-27 weeks, 28­
36 weeks, >36 weeks. Assume that the probabilities of
the different periods of gestation are as given in Table 3.4.

Also assume that the probability of being low birth­
weight given that the length of gestation is <20 weeks is
.540, the probability of being low birthweight given that
the length of gestation is 20-27 weeks is .813, the prob­
ability of being low birthweight given that the length of
gestation is 28-36 weeks is .379, and the probability of
being low birthweight given that the length of gestation
is > 36 weeks is .035.

* 3.49 What is the probability of having a low birthweight
infant?

3.50 Show that the events (length of gestation ~27
weeks) and (low birthweight) are not independent.

* 3.51 What is the probability of having a length of ges­
tation ~36 weeks given that a child is low birthweight?

Pulmonary Disease
A 1974 paper by Colley et al. looked at the relationship
between parental smoking and the incidence of pneumonia
and/or bronchitis in children in the first year of life [8].
One important finding of the paper was that 7.8% of chil­
dren with nonsmoking parents had episodes of pneumonia
and/or bronchitis in the first year of life, whereas, respec­
tively, 11.4% of children with one smoking parent and
17.6% of children with two smoking parents had such an
episode. Suppose that in the general population both par­
ents are smokers in 40% of households, one parent smokes
in 25% of households, and neither parent smokes in 35%
of households.

3.52 What percentage of children in the general popu­
lation will have pneumonia and/or bronchitis in the first
year of life?

.0004

.0059

.0855

.9082

Probability

<20 weeks
20-27 weeks
28-36 weeks

>36 weeks

Length of gestation

Obstetrics
The following data are derived from the 1973 Final Natal­
ity Statistics Report issued by the National Center for
Health Statistics [7]. These data are pertinent to live births
only.

3.36 What is the probability that in a family with two
children, both siblings are affected?

3.37 What is the probability that exactly one sibling is
affected?

3.38 What is the probability that neither sibling is
affected?

Suppose that a disease is inherited via a sex-linked mode
of inheritance. The implications of this mode of inheri­
tance are that each male offspring has a 50% chance of
inheriting the disease, whereas the female offspring have
no chance of getting the disease.

3.39 In a family with one male and one female offspring,
what is the probability that both siblings are affected?

3.40 What is the probability that exactly one sibling is
affected?

3.41 What is the probability that neither sibling is
affected?

3.42 Answer Problem 3.39 for families with two male
siblings.

3.43 Answer Problem 3.40 for families with two male
siblings.

3.44 Answer Problem 3.41 for families with two male
siblings.

Suppose that in a family with two male siblings, both
siblings are affected with a genetically inherited disease.
Suppose also that, although the genetic history of the fam­
ily is unknown, only a dominant, recessive, or sex-linked
mode of inheritance is possible.

3.45 Assume that the dominant, recessive, and sex-linked
modes of inheritance follow the probability laws given in
Problems 3.31, 3.36, and 3.39 and that, without prior
knowledge about the family in question, each is equally
likely to occur. What is the probability of each mode of
inheritance in this family?

3.46 Answer Problem 3.45 for a family with two male
siblings where only one sibling is affected.

3.47 Answer Problem 3.45 for a family with one male
and one female sibling where both siblings are affected.

3.48 Answer Problem 3.47 where only the male sibling
is affected.
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TABLE 3.5 Annual quitting rates of men who smoked.
from the Normative Aging Study, 1962-1975

Note that the quitting rates increased during the period of
1967 to 1970, which was around the time of the first
Surgeon General's report on cigarette smoking.

* 3.57 If the probability that the father is a current smoker
is .5, what is the probability that the father is a current
current smoker and that the mother is not a current smoker?

* 3.58 Are the current smoking habits of the father and the
mother independent? Why or why not?

* 3.59 Find the unconditional probability that the offspring
will have asthma under the assumptions in Problems 3.57
and 3.58.

* 3.60 Suppose that a child has asthma. What is the prob­
ability that the father is a current smoker?

* 3.61 What is the probability that the mother is a current
smoker if the child has asthma?

* 3.62 Answer Problem 3.60 if the child does not have
asthma.

* 3.63 Answer Problem 3.61 if the child does not have
asthma.

* 3.64 Are the child's asthma status and the father's smok­
ing status independent? Why or why not?

* 3.65 Are the child's asthma status and the mother's smok­
ing status independent? Why or why not?

Pulmonary Disease
Smoking cessation is an important dimension in public
health programs aimed at the prevention of cancer and
heart and lung diseases. For this purpose data were accu­
mulated starting in 1962 on a group of current smoking
men as part of the Normative Aging Study, a longitudinal
study of the Veterans Administration in Boston. No inter­
ventions were attempted on this group of men, but the
data in Table 3.5 were obtained as to annual quitting rates
among initially healthy men who remained healthy during
the entire period [9]:

A group of families in which both parents smoke at the
time of the first prenatal visit decide, after counseling by
the nurse practitioner, to give up smoking. Suppose that
in 10% of these families both parents resume smoking and
in 30% of these families one parent resumes smoking. In
the remainder of the families both parents have not
resumed smoking at the time of birth of the child. Assume
also that the smoking status of the parents at the time of
the birth is maintained during the first year of life of the
child.

3.53 What is the probability of pneumonia and/or bron­
chitis in children from families in this group?

3.54 Among families where both parents smoke, what
percentage of cases of pneumonia and/or bronchitis have
been prevented by this type of counseling?

Pulmonary Disease
The familial aggregation of respiratory disease is a well­
established clinical phenomenon. However, whether this
aggregation is due to genetic or environmental factors or
both is somewhat controversial. An investigator wishes to
study a particular environmental factor, namely, the rela­
tionship of cigarette-smoking habits in the parents to the
presence or absence of asthma in their oldest child living
in the household in the 5-9-year-old age range (referred
to below as their offspring). Suppose that the investigator
finds that (i) if both the mother and father are current
smokers, then the probability of their offspring having
asthma is .15; (ii) if the mother is a current smoker and
the father is not, then the probability of their offspring
having asthma is .13; (iii) if the father is a current smoker
and the mother is not, then the probability of their offspring
having asthma is .05; (iv) if neither parent is a current
smoker, then the probability of their offspring having
asthma is .04.

* 3.55 Suppose that the smoking habits of the parents are
independent and that the probability that the mother i~ a
current smoker is .4, whereas the probability that the father
is a. current smoker is .5. What is the probability that both
the father and the mother are current smokers?

* 3.56 What is the probability that the father is a current
smoker if the mother is not a current smoker?

Suppose, alternatively, that if the father is a current
smoker, then the probability that the mother is a current
smoker is .6; whereas if the father is not a current smoker,
then the probability that the mother is a current smoker is
.2. Also assume that statements (i), (ii), (iii), and (iv)
above hold.

Time period

1962-1966
1967-1970
1971-1975

Lightsmokers
(EO one pack per

day) average
annual quitting

rate per 100
persons

3.1
7.1
4.7

Heavy smokers
(> one pack per

day) average
annual quitting

rate per 100
persons

2.0
5.0
4.1
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3.66 Suppose a man was a light smoker on January 1,
1962. What is the probability that he quit smoking by the
end of 1975 (a 14-year period)? (Assume that he remained
a light smoker until just prior to quitting.)

3.67 Answer Problem 3.66 for a heavy smoker on January
1, 1962 (assume that he remained a heavy smoker until
just prior to quitting).

Pulmonary Disease
Research into cigarette-smoking habits, smoking preven­
tion, and cessation programs necessitates accurate mea­
surement of smoking behavior. However, decreasing
social acceptability of smoking appears to engender sig­
nificant underreporting. Chemical markers for cigarette
use can provide objective indicators of smoking behavior.
One widely used noninvasive marker is the level of saliva
thiocyanate (SCN). In a Minneapolis school district, 1332
students in the eighth grade (ages 12-14) participated in
a study [10] whereby they

(1) Viewed a film illustrating how recent cigarette use
could be readily detected from small samples of saliva

(2) Provided a personal sample of saliva thiocyanate

(3) Provided a self-report on the number of cigarettes
smoked per week

The results are given in Table 3.6.

TABLE 3.6 Relationship beiween saliva thiocyanate levels
(SeN) and self-reported cigarettes smoked per week

* 3.68 What is the sensitivity of the test for light-smoking
students (i.e., students who smoke ::::;14 cigarettes per
week)?

* 3.69 What is the sensitivity of the test for moderate­
smoking students (i.e., students who smoke 15-44 cig­
arettes per week)?

* 3.70 What is the sensitivity of the test for heavy-smoking
students (i.e., students who smoke ;:::45 cigarettes per
week)?

* 3.71 What is the specificity of the test?

* 3.72 What is the predictive value positive of the test?

* 3.73 What is the predictive value negative of the test?

Suppose we regard the self-reports of all students who
report some cigarette consumption as valid but estimate
that 10% of students who report no cigarette consumption
actually smoke 1-4 cigarettes per week and an additional
2% smoke 5-14 cigarettes per week.

* 3.74 If we assume that the percentage of students with
SCN ;:::100 p.,g/mLin these two subgroups is the same as
in those who truly report 1-4 and 5-14 cigarettes per
week, then what effect would this underreporting have on
the predictive value positive of the test (i.e., would the
true predictive value positive be the same, higher, or lower
than that computed in 3.72)?

* 3.75 Compute the predictive value positive under these
altered assumptions.

Source: Reprinted with permission from the American Journal of
Public Health, 71(12), 1320, 1981.

Suppose the self-reports are completely accurate and are
representative of the amount that eighth-grade students
smoke in the general community. We are considering using
an SCN level of ;::: 100 p.,g/mL as a test criterion for iden­
tifying cigarette smokers. Regard a student as positive if
he or she smokes 1 or more cigarettes per week.

Self-reported
cigarettes smoked Number of

In last week students

None
1-4
5-14

15-24
25-44
45+

1163
70
30
27
19
23

Percent with
SCN .., 100 /L9jmL

3.3
4.3
6.7

29.6
36.8
65.2

Hypertension
Laboratory measures of cardiovascular reactivity are
receiving increasing attention. Much of the expanded
interest is based on the belief that these measures, obtained
under challenge from physical and psychological stressors,
may yield a more biologically meaningful perspective of
cardiovascular function than more traditional static meas­
ures. Typically, measurement of cardiovascular reactivity
involves the use of an automated blood-pressure monitor
to examine the changes in blood pressure before and after
a stimulating experience (such as playing a video game).
For this purpose, BP measurements were made with the
Vita-Stat machine both before and after playing a video
game. Similar measurements were obtained using manual
methods for obtaining blood pressure. A person was class­
ified as a "reactor" if his or her diastolic blood pressure
(DBP) increased by 10 mm Hg or more after playing the
game and as a nonreactor otherwise. The results are given
in Table 3.7.
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TABLE 3.7 Classification of cardiovascular
reactiviiy using an automated and manual
sphygmomanometer

3.76 If the manual measurements are regarded as the
"true" measure of reactivity, then what is the sensitivity
of automated BP measurements?

3.77 What is the specificity of automated BP mea­
surements?

3.78 If the population tested is representative of the gen­
eral population, then what are the predictive values posi­
tive and negative using this test?

Otolaryngology
The data set in Table 3.8 is based on 214 children with
acute otitis media (OME) who participated in a randomized
clinical trial [11]. Each child had OME at the beginning
of the study in either one (unilateral cases) or both (bilat­
eral cases) ears. Each child was randomly assigned to
receive a 14-day course of one of two antibiotics, either
cefaclor (CEF) or amoxicillin (AMO). The focus here is
on the 203 children whose middle-ear status was deter­
mined at a 14-day follow-up visit. The data in Table 3.8
are presented in Data Set EAR.DAT (on the data disk).

3.79 Does there seem to be any difference in the effect
of the antibiotics on clearance of otitis media? Try to
express your results in terms of relative risk. Consider
separate analyses for unilateral and bilateral cases. Also
consider an analysis combining the two types of cases.

3.80 The investigators recorded the age of the children
because they felt this might be an important factor in

a DBP, manual

determining outcome. Were they right? Try to express your
results in terms of relative risk.

3.81 While controlling for age, propose an analysis com­
paring the effectiveness of the two antibiotics. Express
your results in terms of relative risk.

3.82 Another issue in this trial is the possible dependence
between ears for the bilateral cases. Can you comment on
this issue based on the data collected?

The concept of a randomized clinical trial is discussed
more completely in Chapter 6. The analysis of contin­
gency-table data is studied in Chapter 10, where many
of the formal methods for analyzing this type of data are
discussed.

Cardiovascular Disease
In Table 3.9 data on the relationship between various
symptoms and disease states in patients suspected of hav­
ing congenital heart disease are presented. In this table,
for simplicity, only a subset of the symptoms (7) and
disease states(7) are presented. In the original report [12],
50 symptoms and 33 disease states were considered. In
the Data Set DISEASE.DAT, the prevalence of each of
the disease states and the conditional probability of each
of the symptoms given each of the disease states are pre­
sented. The documentation for this data set is given in the
Data Set DISEASE.DOC. (All data sets are on the data
disk.)

3.83 Write a computer program to compute the proba­
bility of each of the disease states given the presence or
absence of any combination of the 50 symptoms. Note
that some of the symptoms are mutually exclusive and
thus cannot occur simultaneously; for example, symptom
1 = age 1 month to 1 year and symptom 2 = age 1-20
years. Also, some of the symptoms have to be considered
as a group. Read the original report for details concerning
these points.

3.84 Test your program using some of the examples given
in the article.

7
6

;;;,10

51
15

<10

<10
;:::10

a DBP, automated

TABLE 3.8 Format for EARDAT

Column Variable Format or code

1-3
5
7
9

11

ID
Clearance by 14 days

Antibiotic
Age
Ear

1 = yes/O = no
1 = CEF/2 = AMO

1 = <2 yrsl2 = 2-5 yrs/3 = 6+ yrs
1 = 1st earl2 = 2nd ear
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TABLE 3.9 Prevalence of symptoms and diagnoses for patients suspected of having
congenital heart disease
-----------------------------------------------------------------------

Symptoms

Diagnosis Prevalence Xi X2 X3 X4 x, X6 X7

Y1 .155 .49 .50 .01 .10 .05 .05 .01
Y2 .126 .50 .50 .02 .50 .02 .40 .70
Y3 .084 .55 .05 .25 .90 .05 .10 .95
Y4 .020 .45 .45 .01 .95 .10 .10 .95
r, .098 .10 .00 .20 .70 .01 .05 .40
Y6 .391 .70 .15 .01 .30 .01 .15 .30
Y7 .126 .60 .10 .30 .70 .10 .20 .70
-----------------------------------------------------------------------
Note: Yl = normal

Y2 = atrial septal defect without pulmonary stenosis or pulmonary hypertension"
Y3 = ventricular septal defect with valvular pulmonary stenosis
Y4 = isolated pulmonary hypertension"
Ys = transposed great vessels
Y6 = ventricular septal defect without pulmonary hypertension"
Y7 = ventricular septal defect with pulmonary hypertension"
Xl = age 1-20 years old
X2 = age > 20 years old
X3 = mild cyanosis
X4 = easy fatigue
Xs = chest pain
X6 = repeated respiratory infections
X7 = EKG axis more than 110°

aPulmonary hypertension is defined as pulmonary artery pressure > systemic arterial pressure.
Source: Reprinted with permission of The American Medical Association from The Journal of
the American Medical Association, 177(3),177-183,1961. Copyright 1961, American Medical
Association.

Gynecology
A drug company is developing a new pregnancy-test kit
for use on an outpatient basis. The company uses the
pregnancy test on 100 women who are known to be preg­
nant, of whom 95 are positive using the test. The company
uses the pregnancy test on 100 other women who are
known to not be pregnant, of whom 99 are negative using
the test.

* 3.85 What is the sensitivity of the test?

* 3.86 What is the specificity of the test?

The company anticipates that of the women who will use
the pregnancy-test kit, 10% will actually be pregnant.

* 3.87 What is the predictive value positive of the test?

* 3.88 Suppose the "cost" of a false negative (2c) is twice
that of a false positive (c) (since for a false negative pre­
natal care would be delayed during the first trimester of
pregnancy). If the standard home pregnancy-test kit (made
by another drug company) has a sensitivity of 0.98 and a

specificity of .98, then which test (the new or standard)
will cost least per woman using it in the general population
and by how much?

Mental Health
The Chinese Mini-Mental Status Test (CMMS) is a test
consisting of 114 items intended to identify people with
Alzheimer's disease and senile dementia among people in
China [13]. An extensive clinical evaluation was per­
formed of this instrument, whereby participants were inter­
viewed by psychiatrists and nurses and a definitive
diagnosis of dementia was made. Table 3.10 shows the
results obtained on the subgroup of people with at least
some formal education.

Suppose a cutoff value of ~20 on the test is used to
identify people with dementia.

3.89 What is the sensitivity of the test?

3.90 What is the specificity of the test?



TABLE 3.10 Relationship of clinical dementia to
outcome on the Chinese Mini-Mental StatusTest

CMMSscore

0-5
6-10

11-15
16-20
21-25
26-30

Nondemented

°°3
9

16
18

46

Demented

2
1
4
5
3
1

16
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Demography
A study based on data collected from the Medical Birth
Registry of Norway looked at fertility rates according to
survival outcomes of previous births [14]. The data are
presented in Table 3.11.

3.91 What is the probability of having a livebirth (L) at
a second birth given that the outcome of the first pregnancy
was a stillbirth (D), that is, death?

3.92 Answer Problem 3.91 if the outcome of the first
pregnancy was a livebirth.

3.93 What is the probability of 0, 1, and 2+ additional
pregnancies if the first birth was a stillbirth?

3.94 Answer Problem 3.93 if the first birth was a
livebirth.

TABLE 3.11 Relationship of fertiliiy rates to sUNival outcome of previous births in Norway

Continuing to Second birth Continuing to Third birth
First birth second birth outcome third birth outcome

Perinatal outcome n n n n n

D 7,022 5,924 D 368 277 D 39
L 238

L 5,556 3,916 D 115
L 3,801

L 350,693 265,701 D 3,188 2,444 D 140
L 2,304

L 262,513 79,450 D 1,005
L 78,445

---------------------------------------------------------------------------------------
Note: D = dead, L = alive at birth and for at least one week.
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